
Pekin Brook Corridor Plan Calais, Vermont June 2, 2010

Prepared by:

Bear Creek Environmental, LLC 297 East Bear Swamp Road Middlesex, Vermont 05602

and The Central Vermont Regional Planning Commission 29 Main Street Montpelier, VT 05602

Pekin Brook Corridor Plan Calais, Vermont

TABLE OF CONTENTS

I.0 EXECUTIVE SUMMARY	1
2.0 LOCAL PLANNING PROGRAM OVERVIEW	2
2.1 River Corridor Planning Team	
3.0 BACKGROUND WATERSHED INFORMATION	3
3.1 GEOGRAPHIC SETTING 3.3 GEOMORPHIC SETTING 3.4 HYDROLOGY 3.5 ECOLOGICAL SETTING	3
4.0 METHODS	8
 4.1 Phase I Methodology 4.2 Phase 2 Methodology 4.3 Bridge and Culvert 4.4 River Corridor Plan 4.5 Quality Control/Quality Assurance Procedures 	
5.0 RESULTS	
5.1 Phase 2 Results	
6.0 STRESSOR, DEPARTURE AND SENSITIVITY ANALYSIS	21
 6.1 STRESSOR IDENTIFICATION	21 23 25
6.2 DEPARTURE ANALYSIS	
6.3 SENSITIVITY ANALYSIS	
7.0 PRELIMINARY PROJECT IDENTIFICATION AND PRIORITIZATION	
7. I WATERSHED-LEVEL OPPORTUNITIES 7.2 REACH-LEVEL OPPORTUNITIES 7.3 SITE LEVEL OPPORTUNITIES 7.4 NEXT STEPS	40 51
8.0 GLOSSARY OF TERMS	60
9.0 REFERENCES	

Bear Creek Environmental

297 East Bear Swamp Road, Middlesex, Vermont 05602 Phone: (802) 223-5140 / Fax: (802) 229-4410

Pekin Brook Corridor Plan Calais, Vermont

1.0 EXECUTIVE SUMMARY

The River Corridor Planning effort for Pekin Brook in 2009-2010 is sponsored by the Central Vermont Regional Planning Commission (CVRPC) with funding provided through a grant from the Federal Emergency Management Agency (FEMA). The Vermont Department of Environmental Conservation (DEC) River Management Program provided technical expertise and shared quality control/quality assurance responsibilities with Bear Creek Environmental, LLC (BCE). The River Corridor Plan (RCP) followed the Vermont Agency of Natural Resources River Corridor Planning Guide. Information for the RCP came from the DEC, the Vermont Center for Geographic Information (VCGI), and field data collected by BCE and CVRPC. This corridor plan is an addendum to the River Corridor Plan for the Kingsbury Branch of the Winooski River Watershed prepared by BCE, Friends of the Winooski River (FWR) and CVRPC dated October 2008.

The primary objective of the RCP is to use stream geomorphic assessment data to identify and prioritize river corridor protection and restoration projects within the Pekin Brook watershed in the Town of Calais. The stream geomorphic assessment data can be used by resource managers, community watershed groups, municipalities and others to identify how changes to land use alter the physical processes and habitat of rivers. The Vermont Stream Geomorphic Assessment Protocol includes three phases:

- 1. Phase I- Remote sensing and cursory field assessment;
- 2. Phase 2 Rapid habitat and rapid geomorphic assessment to provide field data to characterize the current physical condition of a river; and
- 3. Phase 3 Detailed survey information for designing "active" channel management projects.

A Phase I Stream Geomorphic Assessment following Agency of Natural Resources Protocols was completed for Pekin Brook watershed by FWR, the Winooski Natural Resources Conservation District (WNRCD) and CVRPC as part of the Kingsbury Branch Phase I project. A Phase 2 Stream Geomorphic Assessment following Agency of Natural Resources Protocols was completed for the Kingsbury Branch and the lower section of Pekin Brook from the confluence with the Kingsbury Branch to Kent Hill Road during summer 2007. For the Phase 2 field work in 2007, approximately 4.5 miles of Pekin Brook were assessed. To have a more complete picture of the geomorphic stability and habitat condition of Pekin Brook, a Phase 2 Stream Geomorphic Assessment was conducted by BCE and CVRPC on portions of Pekin Brook, Dugar Brook (a tributary to Pekin Brook), and an unnamed tributary to Pekin Brook during the summer of 2009. The combined length of the stream reaches assessed during the 2009 Phase 2 study is approximately 2 ¹/₂ miles. Approximately 2 miles of Pekin Brook were not assessed due to lack of landowner permission, but administrative judgments were conducted to provide a geomorphic condition and stream type. Bridge and culvert data were collected by BCE during the Phase 2 assessment to identify structures that have the potential to fail because of channel adjustments, are having a geomorphic impact on the stream, or are impeding aquatic organism passage.

The major problems observed within the Pekin Brook watershed include lack of riparian buffer, road encroachment, and channel straightening. Undersized structures are contributing to the unstable geomorphic condition in some reaches. Four mass failures (two on Pekin Brook, one on the unnamed tributary to Pekin Brook, and one on Dugar Brook) were observed during the Phase 2 assessment. Alteration of the stream channel has caused major channel degradation resulting in aggradation, widening, and often major planform adjustment in many reaches. The channel modification, straightening, floodplain encroachment, and the buildup of sediment have all decreased the quality of habitat in the Pekin Brook watershed.

As the river works toward a more stable equilibrium, the community of Calais has the opportunity to provide long-term protection to the river corridor and encourage the reestablishment of floodplain vegetation and healthy instream habitat. At the reach and site level, potential restoration and protection projects that would be compatible with geomorphic adjustments and managing the stream toward equilibrium conditions were identified. A list of 18 potential restoration and conservation projects was developed during project identification and is provided in Table 7 on pages 56 to 60 of this report. Types of projects include: river corridor protection through corridor easements and conservation efforts, replacing undersized structures causing localized channel instability, improving riparian buffers, and alternative analyses for removing dams.

2.0 LOCAL PLANNING PROGRAM OVERVIEW

2.1 River Corridor Planning Team

The river corridor planning team for the Pekin Brook watershed is comprised of the Central Vermont Regional Planning Commission, the Agency of Natural Resources, Bear Creek Environmental, LLC, local municipalities and landowners. This planning effort is sponsored by the Central Vermont Regional Planning Commission. Funding for the project is provided through a grant from the FEMA. Sacha Pealer from the Vermont River Management Section of the Vermont Agency of Natural Resources (VANR) provided technical guidance for this project.

2.2 Goals and Objectives of the Project

The primary objective of the River Corridor Management Plan is to use the Phase I and 2 Stream Geomorphic Assessment data to identify and prioritize river corridor protection and restoration projects within the Pekin Brook watershed. The State of Vermont's River Management Program has set out several goals and objectives that are supportive of the local initiative in the Pekin Brook watershed. The state management goal is to "manage toward, protect, and restore the fluvial geomorphic equilibrium condition of Vermont rivers by resolving conflicts between human investments and river dynamics in the most economically and ecologically sustainable manner" (Vermont Agency of Natural Resources, 2007b). The objectives of the Program include fluvial erosion hazard mitigation and sediment and nutrient load reduction as well as aquatic and riparian habitat protection and restoration. The Program seeks to conduct river corridor planning in an effort to remediate the geomorphic instability that is largely responsible for problems in a majority of Vermont's rivers. Additionally, the Vermont River Management Program has set out to provide funding and technical assistance to facilitate an understanding of river instability and the establishment of well developed and appropriately scaled strategies to protect and restore river equilibrium.

3.0 BACKGROUND WATERSHED INFORMATION

3.1 Geographic Setting

Please refer to the Kingsbury Branch of the Winooski River Watershed: River Corridor Plan (BCE, FWR and CVRPC, 2009) for a summary of the geographic setting. A project location map is provided below for reference (Figure 3.1).

3.2 Geologic Setting

Please refer to the Kingsbury Branch of the Winooski River Watershed: River Corridor Plan (BCE, FWR and CVRPC, 2009) for a description of the geologic setting.

3.3 Geomorphic Setting

A Phase I Stream Geomorphic Assessment was conducted on 36 reaches in the Pekin Brook Watershed in 2007. Each reach represents a similar section of the stream based on physical attributes such as valley confinement, slope, sinuosity, bed material, dominant bedform, land use, and other hydrologic characteristics. Each point represents the downstream end of the reach. The 2007 Phase 2 study included 4.5 miles of Pekin Brook from the confluence with the Kingsbury Branch upstream to Kent Hill Road (near the former Calais town hall). The Phase 2 study conducted in 2009 focused on two stream reaches on the main stem of Pekin Brook, one reach on an unnamed tributary to Pekin Brook, and four reaches on Dugar Brook within the Town of Calais. In 2009, one mile on Pekin Brook, 1.2 miles on Dugar Brook, and one-quarter mile of an unnamed tributary to Pekin Brook were assessed for Phase 2 by BCE and CVRPC (Figure 3.2).

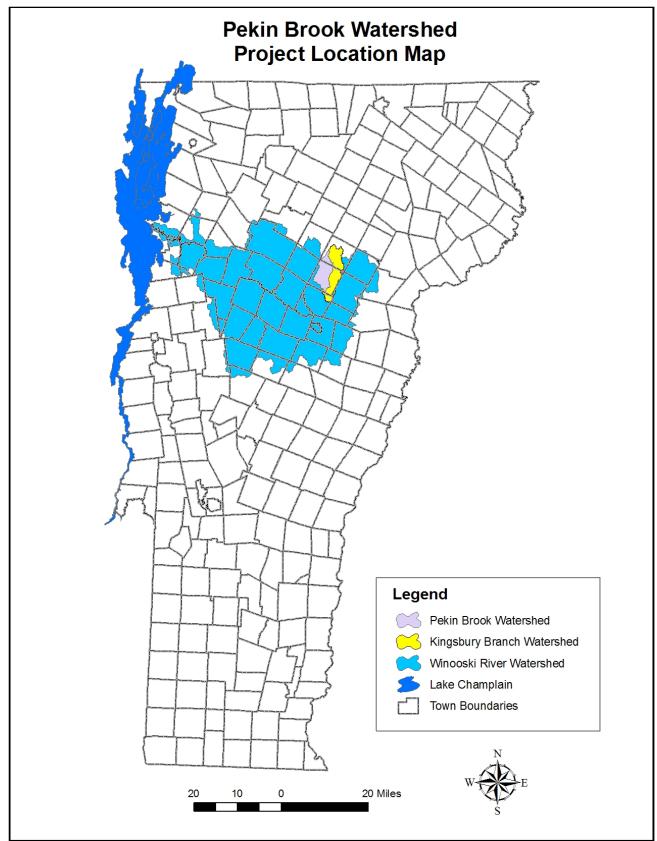


Figure 3.1 Project Location Map

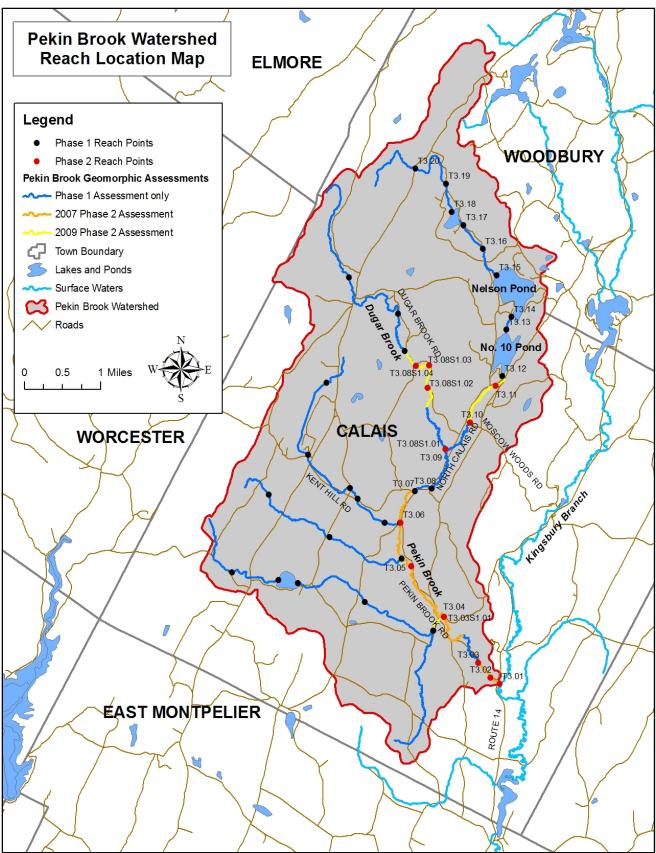


Figure 3.2 Pekin Brook Watershed Reach Location Map

Reference stream types are based on the valley type, geology and climate of a region and describe what the channel would look like in the absence of human-related changes to the channel, floodplain, and/or watershed. Stream and valley characteristics including valley confinement, and slope were determined from digital USGS topographic maps. The reference reach characteristics were refined during the windshield survey and Phase 2 Assessment. Reference reach typing was based on both the Rosgen (1996) and the Montgomery and Buffington (1997) classification systems. Table I shows the typical characteristics used to determine reference stream types (Vermont Agency of Natural Resources, 2007b).

Reference stream types for the assessed reaches are listed in Table 2. Reference stream types are variable for reaches assessed for Phase 2 in 2009. Three reaches (one on Pekin Brook, one on Dugar Brook, and one on the unnamed tributary to Pekin Brook) have a reference stream type of "C". Reference "C" channels have unconfined valleys with moderate to gentle valley slopes and moderate to high width to depth ratios and sinuosity. On Dugar Brook, two reaches have a reference stream type of "E". Reference "E" channels have unconfined valleys and moderate to gentle valley slopes, but have lower width to depth ratios and are generally more sinuous than "C" channels. The rest of the reaches are "B" channels by reference (Figure 3.3). "B" channels have moderate to steep slopes and have narrower valleys than C channels.

Table I: Reference Stream Type						
Stream Type	Confinement	Valley Slope	Bed Form			
A	Narrowly Confined	Very steep > 6.5 %	Cascade			
A	Confined	Very steep 4.0 - 6.5 %	Step-Pool			
В	Confined or Semi- confined	Steep 3.0 – 4.0 %	Step-Pool			
В	Confined, Semi- confined or Narrow	Moderate to Steep 2.0 – 3.0 %	Plane Bed			
C or E	Unconfined (Narrow, Broad or Very Broad)	Moderate to Gentle <2.0 %	Riffle-Pool or Dune-Ripple			
D	Unconfined (Narrow, Broad or Very Broad)	Moderate to Gentle <4.0 %	Braided Channel			

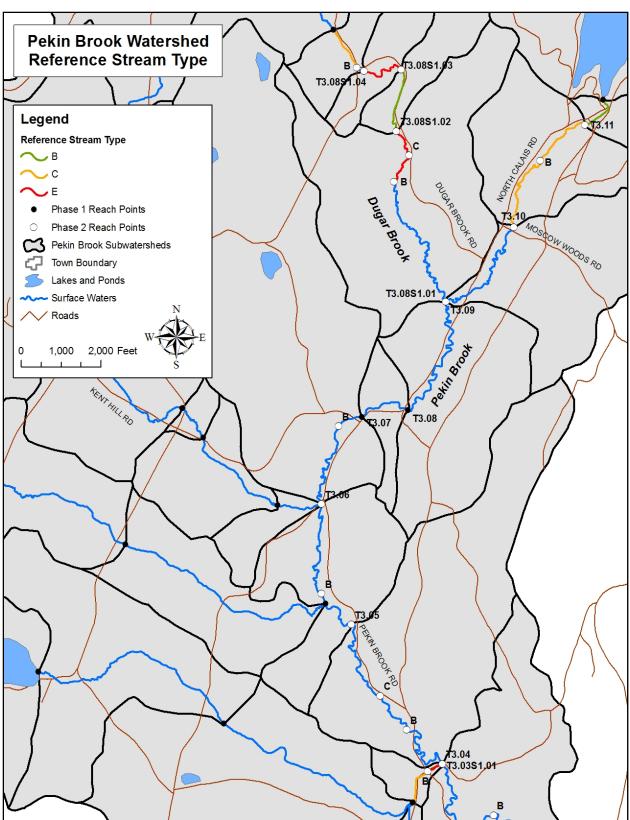


Figure 3.3 Reference Stream Type in Pekin Brook Watershed (2009 Study Area)

Table 2: Geomorphic Setting of Assessed Reaches							
Stream	Reach ID	Reference Stream Type	Confinement	Valley Slope	Bedform		
Tributary to Pekin Brook	T3.03S1.01	С	Very Broad	0.65	Riffle- Pool		
Dugar Brook	T3.08S1.01	E	Very Broad	0.79	Riffle- Pool		
	T3.08S1.02	В	Semi- Confined	2.31	Riffle- Pool		
	T3.08S1.03	E	Very Broad	3.47	Riffle- Pool		
	T3.08S1.04	С	Broad	3.47	Riffle- Pool		
Pekin Brook	T3.10	С	Very Broad	1.99	Riffle- Pool		
	T3.11	В	Broad	6.44	Step- Pool		

3.4 Hydrology

Please refer to the Kingsbury Branch of the Winooski River Watershed: River Corridor Plan (BCE, FWR and CVRPC, 2008) for an understanding of the flood history.

3.5 Ecological Setting

Please refer to the Kingsbury Branch of the Winooski River Watershed: River Corridor Plan (BCE, FWR and CVRPC, 2008) for a description of the ecological setting of the Pekin Brook watershed.

4.0 METHODS

4.1 Phase I Methodology

A Stream Geomorphic Assessment process is divided into three phases, based on VANR protocols. Phase I, the remote sensing phase, involves the collection of data from topographic maps and aerial photographs, from existing studies, and from very limited field studies called "windshield surveys." The Phase I assessment provides an overview of the general physical nature of the watershed and identifies which reaches are in need of further assessment. A Phase I Assessment of the Pekin Brook watershed was completed in 2007.

4.2 Phase 2 Methodology

The Phase 2 assessment of the Pekin Brook followed procedures specified in the Vermont Stream Geomorphic Assessment Handbook Phase 2 (Vermont Agency of Natural Resources, 2007b). All assessment data were recorded on the Agency of Natural Resources Phase 2 data sheets, and were entered in to the ANR Stream Geomorphic Assessment data management system (DMS). The Phase I database was updated using the field data from the Phase 2 assessment in 2007 and 2009.

The parameters and protocols used for undertaking the Phase 2 assessment are outlined in the Phase 2 Handbook (Vermont Agency of Natural Resources, 2007b). The entire length of each Phase 2 reach was walked to determine segment breaks. Bank erosion, grade control structures, bank revetments, debris jams, depositional features, stormwater inputs, flood chutes, valley walls and other important features were mapped within all segments. BCE used the Stream Geomorphic Assessment Tool (SGAT) version 4.56 to index features that were mapped during the Phase 2 assessment. SGAT is an ArcView extension.

4.3 Bridge and Culvert

Bridge and culvert inventory and assessments were conducted by BCE during the Phase 2 Assessment to determine if stream crossings are contributing to localized streambank erosion, sedimentation, and reduced fish passage. Fourteen of these structures are located within the Pekin Brook Phase 2 study area. The Agency of Natural Resources Bridge and Culvert protocols were employed (Vermont Agency of Natural Resources, 2007b). The Vermont Culvert Geomorphic Screening Tool (Milone and MacBroom, Inc., 2008a) and the Vermont Culvert Aquatic Organism Passage Screening Tool (Milone and MacBroom, Inc, 2008b) were used to identify culverts within the Pekin Brook watershed that are highest priority for replacement/retrofit due to geomorphic incompatibility and/or for being potential barriers to movement and migration of aquatic organisms.

4.4 River Corridor Plan

The Vermont Agency of Natural Resources River Corridor Planning Guide (2007a) and Draft 9 of Chapter 5 of the plan dated October 2, 2007 were followed to generate a series of stressor maps, which are included in Section 6.0. The stressor maps were created using indexed data from the Phase I and Phase 2 Stream Geomorphic Assessments along with existing data available from VCGI, including e911 roads, e911 buildings and e911 driveways. The stressor maps were then used to identify potential project locations that have few constraints to channel adjustment.

4.5 Quality Control/Quality Assurance Procedures

To assure a high level of confidence in the Phase I and 2 SGA data, strict quality assurance/quality control (QA/QC) procedures were followed by BCE. These procedures involved a thorough in-house review of all data as well as automated and manual QC checks with the DEC River Management Program.

In late 2009, BCE completed its own in-house QA review after all the Phase 2 data were entered into the DMS and the Phase I data were updated. The Phase I DMS and ArcView shapefiles were updated by Pam DeAndrea based on the Phase 2 field assessment work

during the Phase 2 QA/QC process. The DMS and the ArcView shapefiles for the Pekin Brook Phase 2 study were submitted to Sacha Pealer of the ANR for a Quality Assurance review in December 2009. Some minor revisions were made by BCE to the DMS following this review and the ANR QA review was completed in March 2010.

5.0 RESULTS

5.1 Phase 2 Results

Rapid Geomorphic Assessment

During the Phase 2 assessments, the seven reaches in the Pekin Brook watershed study area were broken into 12 segments based on detailed field observations. The reference and existing stream type for each assessed segment is included in Figures 3.3 and 5.1, respectively. Detailed segment summary data are provided in Appendix A.

There is only one segment where the existing stream type differs from the reference stream type or a stream type departure has taken place. A stream type departure occurs when the channel dimensions deviate so far from the reference condition that the existing stream type is no longer the reference stream type. A stream type departure from a reference "Cb" channel to a "B" channel has occurred in segment T3.08S1.04-B due to the placement of Dugar Brook Road. Stream type departures represent a significant change in floodplain access and stability. Watersheds which have lost attenuation or sediment storage areas due to human related constraints are generally more sensitive to erosion hazards, transport greater quantities of sediment and nutrients to receiving waters, and lack the sediment storage and distribution processes that create and maintain habitat (Vermont Agency of Natural Resources, 2007a).

The existing geomorphic condition is depicted in Figure 5.2. Except for two reaches/segments, the assessed segments and reaches in the Pekin Brook watershed were found to be in "fair" geomorphic condition. Segment T3.08S1.01-C and reach T3.08S1.02 on Dugar Brook, which are in close proximity to Dugar Brook Road, were found to be in "good" geomorphic condition. Both of these segments are not incised. Geomorphic condition is determined based on the degree of channel degradation, aggradation, widening, and planform adjustment. Segment T3.08S1.01-A at the mouth of Dugar Brook was not assessed because it is a wetland influenced by beaver dams. Another segment, T3.08S1.04-A, on Dugar Brook is located in a bedrock gorge and was, therefore, not assessed.

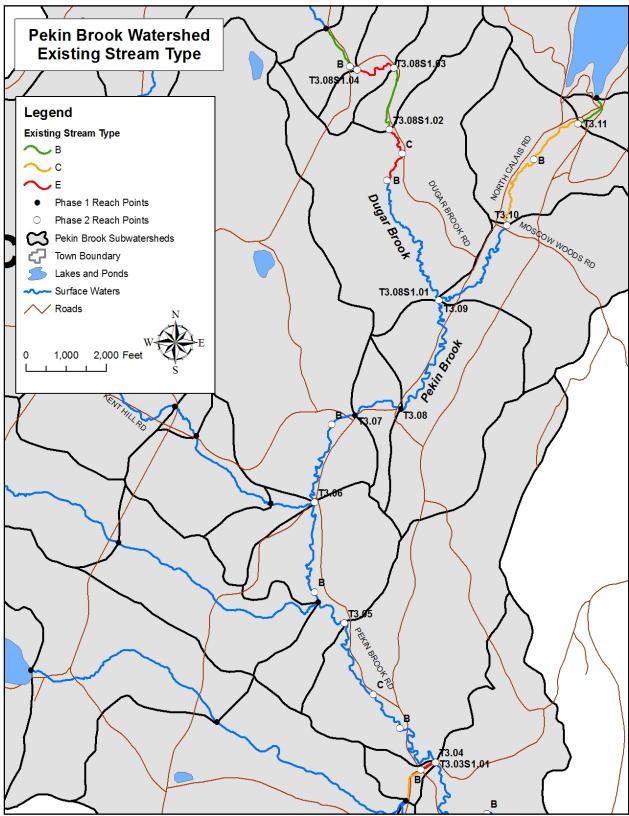


Figure 5.1 Existing Stream Type in Pekin Brook Watershed.

Pekin Brook Corridor Plan Bear Creek Environmental, LLC Page 12 Central Vermont Regional Planning Commission

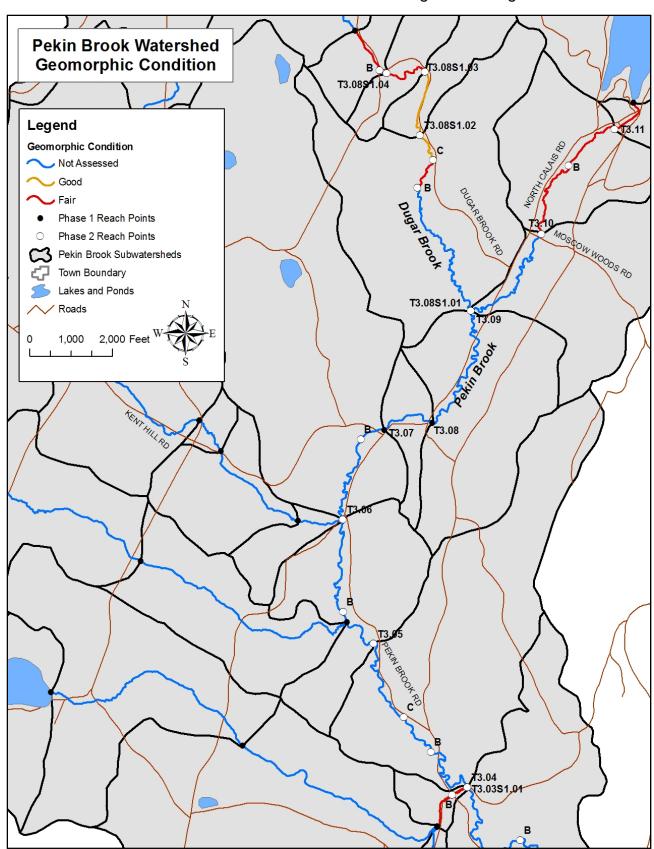


Figure 5.2. Phase 2 Geomorphic Condition of Pekin Brook Watershed

The reach condition ratings of the Pekin Brook watershed indicate that most of the reaches are actively, or have historically, undergone a process of minor or major geomorphic adjustment. Many of the reaches studied in the Pekin Brook watershed are undergoing a channel evolution process in response to large scale changes in its sediment, slope, and/or discharge associated with the human influences on the watershed. Table 3 below summarizes the channel evolution of each study reach and the primary adjustment processes that are occurring.

Both the "D" stage and "F" stage channel evolution model (Vermont Agency of Natural Resources, 2007b) are helpful for explaining the channel adjustment processes underway in the Pekin Brook watershed. The "F" stage channel evolution model is used to understand the process that occurs when a stream degrades (incises). The common stages of the "F" channel evolution stage, as depicted in Figure 5.3 include:

- A pre-disturbance period
- Incision channel degradation
- Aggradation and channel widening
- The gradual formation of a stable channel with access to its floodplain at a lower elevation

The "D-stage" channel evolution model applies to reaches where there may have been some minor historic incision; however, the more dominant active adjustment process is aggradation, which then in turn leads to channel widening and planform adjustment. The Dstage adjustment process typically occurs in unconfined, low to moderate gradient valleys where the stream is not entrenched and has access to its floodplain or flood prone area at the I-2 year flood stage.

When stream channels are altered through straightening, it can set this evolution process into motion and cause adjustment processes to occur. The bed erosion that occurs when a meandering river is straightened in its valley is a problem that translates to other sections of the stream. Localized incision will travel upstream and into tributaries eroding sediments from otherwise stable streambeds. These bed sediments will move into and clog reaches downstream leading to lateral scour and erosion of the streambanks. Channel evolution processes may take decades to play out. Even landowners that have maintained wooded areas along their stream and riverbanks may have experienced eroding banks as stream channel slopes adjust to match the valley slopes. It is difficult for streams to attain a new equilibrium where the placement of roads and other infrastructure has resulted in little or no valley space for the stream to access or to create a floodplain.

Channel equilibrium can be assessed by looking at the regimes of sediment transport within the watershed. The analysis of sediment regimes at the watershed scale is useful for summarizing the stressors affecting the equilibrium condition of river channels. Sediment regime mapping provides a context for understanding the sediment transport and channel evolution processes which govern changes in geometry and planform for river channels in a state of disequilibrium. Sediment Regime Maps have been prepared for each subwatershed to show departure from reference conditions due to human alterations.

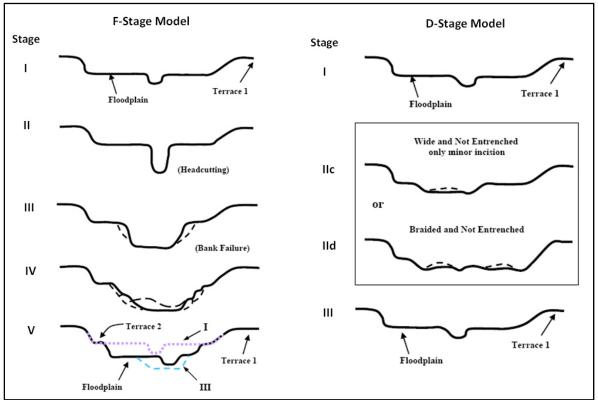


Figure 5.3 Typical channel evolution model for F-Stage and D-Stage (Vermont Agency of Natural Resources, 2007b)

In terms of the ANR channel evolution model, Pekin Brook is predominately at stage IV of the "F-stage" channel evolution model except for the reach just downstream of No. 10 Pond, T3.11, which is in stage II. In two segments of Pekin Brook (T3.10-A and T3.10-B), the channel has undergone historic degradation as evidenced by abandoned terraces. On Dugar Brook, the channel evolution stage is variable with segments ranging from the F-I to F-IV stages and one reach in stage D-IId. Segment T3.08S1.02 on Dugar Brook, which is adjacent to Dugar Brook Road, was found to be in stage I of the "F" channel evolution model, wherein the channel has not yet incised due to the presence of bedrock. Another segment on Dugar Brook, T3.08S1.01-C, fell into the "D-stage" evolution model, where the more dominant active adjustment process is aggradation. The tributary to Pekin Brook has undergone historic degradation and is in either stage II or III of the "F" model. The most upstream segment on this tributary is actively undergoing major aggradation, widening and planform change due to the lack of buffer. Many of the cross sections on study reaches were found to be incised, with six segments having moderate incision ratios. The incision ratios ranged from 1.0 to 1.51.

In some of the segments, the system is actively adjusting to this lower bed elevation by creating a new floodplain at a lower elevation. Channels are also adjusting their planform through lateral movement as shown by flood chutes, avulsions, and neck cutoffs. This planform adjustment is leading to another adjustment process, aggradation. Aggradation in

the Pekin Brook study area seems to be a combination of endogenous sediment that is created as the stream widens and erodes its banks to reestablish a new floodplain as well as from exogenous sources such as gravel roads and land clearing. Unvegetated mid-channel bars, point bars, side bars, diagonal avulsions, flood chutes and impending neck cutoffs confirm that Dugar Brook, Pekin Brook, and the unnamed tributary are undergoing extensive lateral migration in some reaches.

Table 3. Strea	am Type an	d Channe	l Evolution	Stage			
Segment Number	Entrench ment Ratio	Width to Depth Ratio	Reference Stream Type	Incision Ratio ¹	Existing Stream Type	Channel Evolution Stage	Active Adjustment Process ²
Trib. to Pekir	n Brook						
T3.03S1.01-A	45.6	7.93	E4	<mark>1.30</mark>	E4	F-II	Aggradation Widening Planform
Т3.03S1.01-В	12.9	20.6	C4	1.18	C4	F-III	Aggradation Widening Planform
Dugar Brook							
T3.08S1.01-B	35.2	9.34	E4	1.51	E4	F-IV	Aggradation Widening Planform
T3.08S1.01-C	21.6	10.2	E4	1.00	E4	D-IId	Aggradation Widening Planform
T3.08S1.02	I.40	16.3	B4	1.00	B4	F-I	Aggradation Widening Planform
T3.08S1.03	12.5	10.9	E4	1.38	E4	F-III	Aggradation Widening Planform
T3.08S1.04-B	1.59	21.6	C3	<mark>1.43</mark>	B3	F-II	Aggradation Widening Planform
Pekin Brook							
T3.10-A	8.52	23.1	C4	<mark>1.43</mark>	C4	F-IV	Aggradation Planform
Т3.10-В	3.71	14.8	C4b	<mark>1.51</mark>	C4	F-IV	Aggradation Widening Planform
Т3.11	1.61	21.8	B3a	1.14	B3	F-II	Aggradation Widening Planform

¹ Blue denotes moderate incision ratio

² Bold Black lettering denotes major adjustment process; black lettering (no bold) denotes minor adjustment process.

HABITAT EVALUATION

Table 4 below shows a comparison of the habitat condition based on the Rapid Habitat Assessment (RHA) and the geomorphic condition based on the Rapid Geomorphic Assessment (RGA). For four of the ten assessed segments, both the RHA and the RGA resulted in a "fair" rating. Two segments (T3.08S1.01-C and T3.08S1.02) had a rating of "good" for both the RHA and the RGA. Four segments (T3.08S1.01-B, T3.08S1.03, T3.10-A and T3.10-B) had a rating of "good" for habitat but "fair" for geomorphic condition. Many of the reaches that had been straightened or had floodplain alterations lacked a strong riffle-pool bedform and the diversity of habitat features that this brings. Many reaches had major intrusion into their river corridor from roads and many had inadequate riparian buffers due to historic and/or recent land clearing. Overall, the RHA score was similar to the RGA score, implying that the ecological health of streams in the Pekin Brook Watershed is closely related to the geomorphic condition of the stream.

Segment	Score	Score RGA	Rating RHA	Rating RGA			
Number	RHA						
T3.03S1.01-A	0.41	0.54	Fair	Fair			
T3.03S1.01-B	0.46	0.44	Fair	Fair			
T3.08S1.01-A		Beaver Dam Influe	ence – Not Assessed	1			
T3.08S1.01-B	0.73	0.61	Good	Fair			
T3.08S1.01-C	0.75	0.65	Good	Good			
T3.08S1.02	0.76	0.70	Good	Good			
T3.08S1.03	0.66	0.48	Good	Fair			
T3.08S1.04-A		Bedrock Gorge – Not Assessed					
T3.08S1.04-B	0.64	0.53	Fair	Fair			
Т3.07	No Landowner Permission – Not Assessed						
T3.08	No Landowner Permission – Not Assessed						
Т3.09	No Landowner Permission – Not Assessed						
T3.10-A	0.67	0.59	Good	Fair			
Т3.10-В	0.72	0.59	Good	Fair			
T3.11	0.51	0.55	Fair	Fair			

Table 4. Comparison of RHA and RGA for Phase 2 Reaches

5.2 Bridge and Culvert Assessment

A total of eight permanent structures (four bridges and four culverts) are located within the Phase 2 Pekin Brook study area (Figure 5.4). One additional culvert on a reach without landowner access (T3.09), which is at the Moscow Woods Road crossing, was assessed from the upstream end. Six of these stream crossings are on public roads. A bridge and culvert assessment using the VANR protocol was conducted on these structures during the Phase 2 Assessment. The geomorphic compatibility and AOP screening tools, photographs and Phase 2 constriction notes were used to prioritize structures for replacement/retrofit. A list of resources for towns regarding funding, planning and design for replacement and retrofit of stream crossings is available on the Vermont River Management and the Vermont Department of Fish and Wildlife's web sites:

<u>http://www.vtwaterquality.org/rivers/htm/rv_EducationalResources.htm</u> <u>http://www.vtfishandwildlife.com/library.cfm?libbase_=Reports_and_Documents</u>).

Table 5 summarizes the data collected for seven structures within the Phase 2 study reaches, and one within reach T3.09. The final column of Table 5 includes a prioritization of structures for replacement or retrofit based on three criteria: structure width in relation to bankfull channel width, aquatic organism passage (AOP) and geomorphic compatibility, and notes from the Phase 2 study. A summary of the structures is provided in Appendix B.

One of three priorities for replacement was assigned (low, moderate or high). The following criteria explain the priority level assigned to each structure:

High Priority: Structures with spans of approximately 50 percent of the bankfull width or less, which are significantly impeding natural sediment transport. Culverts that are impeding the passage of aquatic organisms are automatically placed in the high priority category (e.g. free fall outlet).

Moderate Priority: Structures with spans less than 50 percent that are not causing significant geomorphic instability and structures with spans greater than 50 percent that are causing instability. Culverts that are resulting in reduced aquatic organism passage (e.g. do not have material throughout the structure or have a cascade outfall) result in at least moderate priority.

Low Priority: Stream crossing structures that are not included in either of the two categories above.

Although the percent bankfull width is less than 50 percent, no significant sediment transport issues were noted at the box culvert at the North Calais Road crossing on Pekin Brook and the culvert screening tool resulted in a score of mostly compatible. In addition, the box culvert has bed material throughout the structure, thereby offering full aquatic organism passage. For these reasons, the North Calais Road culvert was assigned a replacement priority of low.

On Dugar Brook, the bridge at Apple Hill Road is undersized and has a small mass failure associated with some fallen rip-rap armoring on the downstream end. In 1973, a culvert at the Apple Hill Road crossing was washed downstream from a flood event. The culvert was replaced, but in 1984 another flood event caused the culvert to be blocked with debris and floodwaters were diverted onto Dugar Brook Road. The road was washed out for approximately 1,000 feet. According to local residents, the bridge was installed after the culvert at the crossing washed out the second time. The Apple Hill Road Bridge is low priority for replacement due to the abundant bedrock below the structure and the relatively good condition of the bridge.

Four structures (two culverts and two bridges) were identified as moderate priority for replacement/retrofit. The culverts in the moderate priority category fall within the partially compatible category using the geomorphic screening tool. Both of these structures, located on Pekin Brook Road and Moscow Woods Road, have reduced AOP passage due to lack of sediment throughout the structure. The Moscow Woods Road culvert is significantly undersized and has a percent bankfull width of less than 50 percent. One bridge that crosses Pekin Brook at TH16 is in poor alignment with the channel and is significantly undersized. Another bridge at a private crossing is significantly undersized. Both these bridges have a moderate priority for replacement.

The culvert at George Road on the tributary to Pekin Brook was assigned a high priority for replacement. This culvert was rated as mostly incompatible using the geomorphic screening tool. Scour is undermining the culvert on both the upstream and downstream ends. Bank armoring is failing and there is considerable erosion in the vicinity of the culvert. The culvert opening is blocked by woody debris and there is a mid-channel bar directly downstream of the culvert. The George Road culvert lacks sediment throughout the structure resulting in reduced aquatic organism passage.

A private driveway bridge on Dugar Brook is significantly undersized. The openings for the bridge are very small and obstructed by woody debris on the upstream end. The structure is unstable and has a low clearance. This bridge has been given a high priority for replacement.

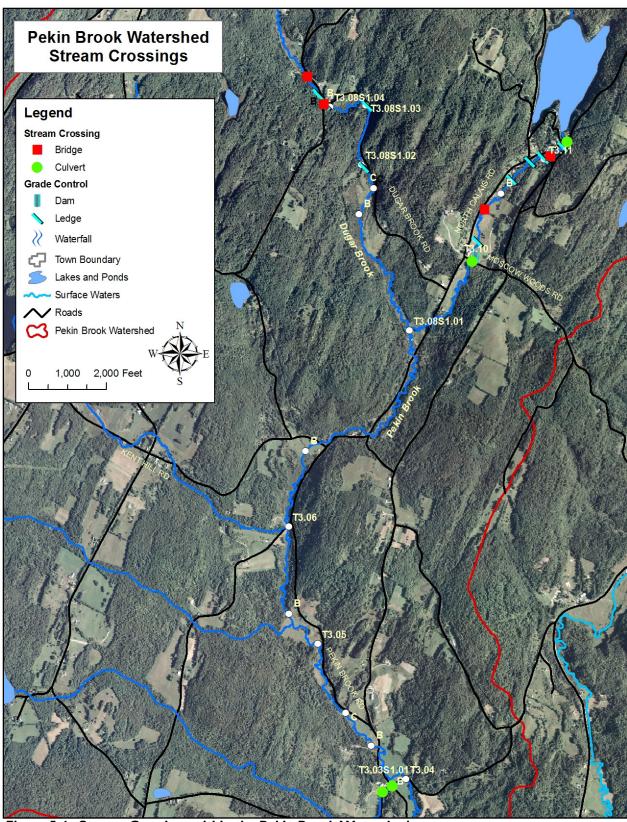


Figure 5.4. Stream Crossings within the Pekin Brook Watershed

Pekin Brook Corridor Plan <u>Bear Creek Environmental, LLC</u>

Page 20 Central Vermont Regional Planning Commission

Table 5 Pekin Brook Watershed Evaluation using VANR Geomorphic Compatibility and AOP Screening Tools								
Stream Name	Reach/ Segment Number	Road Name	Structure Type	Percent Bankfull Channel Width ¹	Aquatic Organism Passage (AOP)	Geomorphic Compatibility	Phase 2 Constriction Notes	Priority for Replacement or Retrofit
Tributary	T3.03S1.01-A	Pekin Brook Road	Box Culvert	101%²	Reduced	Partially Compatible	Scour below	Moderate
to Pekin Brook	Т3.03S1.01-В	George Road	Culvert	23% ³	Reduced	Mostly Incompatible	Deposition above, Deposition below, Scour below	High
Dugar Brook	T3.08S1.04-A	Apple Hill Road	Bridge	59%³	NA	NA	Scour above, Scour below; Contributing to mass failure	Low
	T3.08S1.04-B	Private Driveway	Bridge	14%3	NA	NA	Deposition below, Scour above, Scour below	High
	T3.09	Moscow Woods Road	Culvert	22%²	Reduced	Partially Compatible	Scour above, Scour below	Moderate
Pekin Brook	T3.10-A	Private Trail	Bridge	16% ³	NA	NA	Deposition above, Scour below	Moderate
	T3.11	THI6	Bridge	23% ³	NA	NA	Alignment	Moderate
	T3.11	North Calais Road	Box Culvert	33% ³	Full	Mostly Compatible	Scour above, Scour Below, Alignment	Low

6.0 Stressor, Departure and Sensitivity Analysis

Stressor, departure and sensitivity maps are presented here as a means of displaying the effects of significant physical processes occurring within the Pekin Brook watershed that were observed during the Phase I and Phase 2 Stream Geomorphic Assessments. These maps also provide an indication of the degree to which the channel adjustment processes within the watershed have been altered, at both the watershed scale and the reach scale. The analysis of existing and historic departures from equilibrium conditions along a stream network allows for the prediction of future alterations within the watershed. This is helpful in developing and prioritizing potential protection and restoration projects.

6.1 Stressor Identification

6.1.1 Hydrologic Regime Stressors

The hydrologic regime is the timing, volume, and duration of flow events throughout the year and over time and is characterized by the input and manipulation of water at the watershed scale. When the hydrologic regime has been significantly changed, stream channels will respond by undergoing a series of channel adjustments. The land use within the watershed plays an important role in the hydrology of the receiving waters. The percentage of urban and cropland development within the watershed are factors which change a watershed's response to precipitation. The most common effects of urban and cropland development is increasing peak discharges and runoff by reducing infiltration and travel time (United States Department of Agriculture 1986).

The dominant watershed land cover/land use within the Pekin Brook watershed is forest. All Phase 2 reaches resulted in a watershed land cover/land use impact rating of high (10% or more is crop and/or urban). Analysis of hydric soils located where current land uses are agricultural or urban indicates some loss of wetland attenuation (Figure 6.1). Historical deforestation in the Pekin Brook watershed may also have contributed to wetland loss.

The Pekin Brook watershed has a moderate network of roads throughout as shown in Figure 6.1. Extensive road networks can contribute significantly to increased flows within a river resulting both from increased runoff and stormwater ditching. According to Foreman and Alexander (1998), increased peak flows in streams may be evident at road densities of 3.2 miles/ square mile. Subwatersheds with road densities of greater than 3.2 miles/ square mile account for about 25 percent of the Pekin Brook watershed. The highest road densities within the watershed are along Pekin Brook just downstream of No. 10 Pond (Mirror Lake), along a tributary to Pekin Brook that follows Kent Hill Road, and at the mouth of Pekin Brook.

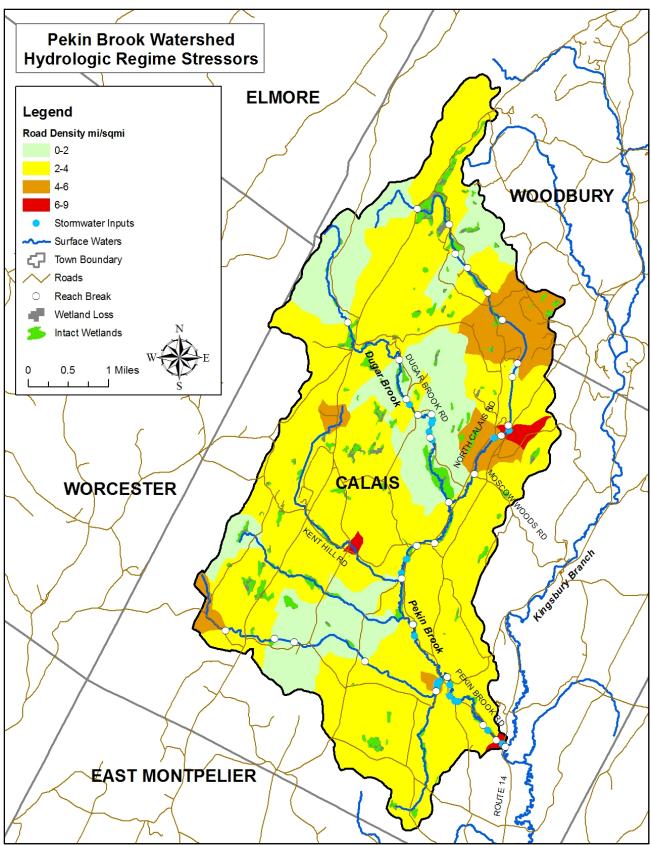


Figure 6.1 Hydrologic Regime Stressors in the Pekin Brook Watershed

6.1.2 Sediment Regime Stressors

The sediment regime is the quantity, size, transport, sorting and distribution of sediments. The sediment regime may be influenced by the proximity of sediment sources, the hydrologic regime, and the specific morphology of the valley, floodplain, and stream. The Sediment Load Indicators Map (Figure 6.2) shows the distribution of sediment load indicators in the study area. Figure 6.2 also shows the cumulative percentage of agricultural land (based on the percentage of cropland) for each subwatershed.

Bank erosion and mass failures contribute significant sediment inputs within the Pekin Brook watershed. Bank erosion is defined as "an area of raw and barren soils where the vegetation does not have the ability to hold the soil and/or the soil has slumped or fallen into the channel". Mass failures can occur when "a perennial stream erodes into or undercuts a high erodible landform, such as glacial lacustrine terrace" (Vermont Agency of Natural Resources, 2007b). Bank erosion mapped during the Phase 2 study totals approximately 18 percent on both the east and west banks of the seven reaches assessed indicating a moderate level of erosion. Four mass wasting sites were mapped during the Phase 2 assessment in 2009 and four were mapped during 2007. The total length of mass failures on the 2009 Phase 2 reaches of Pekin Brook is about 115 feet. One mass failure was found on the tributary to Pekin Brook, two on Pekin Brook and one on Dugar Brook near the Apple Hill Road crossing.

Depositional features per mile are mapped to show areas of deposition and planform adjustment. Steep riffles, mid-channel bars, delta bars, flood chutes, avulsions and braiding are parameters included in this depositional features parameter. This parameter does not necessarily explain the sources of sediment, but these depositional and channel bifurcation features are common in areas where the sediment transport capacity of the channel has been exceeded (Vermont Agency of Natural Resources, 2007a). Channel migration features (avulsions and flood chutes) are included on the map to show areas of significant planform adjustment. Ninety percent of the Phase 2 segments assessed in 2009 have a high number (>5) depositional features per mile. The most upstream segment assessed for Phase 2 on Dugar Brook (T3.08S1.04-B) is the only reach with a moderate (>2 <=5) number of depositional features per mile.

The moderate bank erosion and the prevalence of mass failures illustrate the streams within the Pekin Brook watershed have a high source of sediment input. This is resulting in the channels being overwhelmed by sediment and exceeding the sediment transport capability as observed by the numerous depositional features per mile. The high level of aggradation is especially evident in T3.08S1.01-B and T3.08S1.01-C on Dugar Brook where there are multiple depositional features and the segments are in stage F-IV and D-IId, respectively.



Figure 6.2. Sediment load indicators map for the Pekin Brook Watershed

6.1.3 Channel Modifiers

Channel straightening, floodplain encroachment, and berms and roads can increase the slope of a channel resulting in increased stream power. Increases in stream power (shown in red or orange in Figures 6.3 and 6.4) can initiate streambed erosion resulting in incision. The most extensive areas of channel straightening and floodplain encroachment (both development and adjacent berms and roads) are in the upstream reaches of Pekin Brook (T3.10 and T3.11) and the lowest reach on the tributary to Pekin Brook, T3.03S1.01 (Figures 6.3 and 6.4). The channel runs predominantly along North Calais Road and George Road. Dugar Brook has extensive encroachment along the channel from Dugar Brook Road, but only seems to be historically straightened in segment T3.08S1.04-B. Segment T3.08S1.02 appears to be naturally straight and the road was probably placed within the natural valley wall. The majority of the channel straightening within the Pekin Brook watershed is associated with roads that run parallel to the stream. The extensive areas with increases in stream power explain the high degree of channel adjustment that is occurring within the watershed.

Grade controls (waterfalls and ledge) and natural and manmade dams and constrictions (such bridges and culverts) constrict flows or raise the bed elevation. The backwater conditions and sediment deposition associated with these grade controls and constrictions typically reduces channel slope and stream power (Vermont Agency of Natural Resources, 2007a). Localized areas where slope decreases are expected in the Pekin Brook watershed are shown in blue and green in Figures 6.3 and 6.4.

6.1.4 Boundary Conditions and Riparian Modifiers

The resistance of the channel boundary materials is important for understanding the sensitivity of a channel and for predicting when a channel will undergo the adjustment process from stressors in the watershed. There are a number of factors that can result in decreased boundary condition. One of the most important factors is the quality of the riparian buffer. Riparian buffers provide many benefits. Some of these benefits are protecting and enhancing water quality, providing fish and wildlife habitat, providing streamside shading, and providing root structure to prevent bank erosion. Woody vegetation is essential for holding the bank soils to provide resistance to streambank erosion. There are many locations along Pekin Brook, the tributary to Pekin Brook, and Dugar Brook where there is little or no buffer as defined by buffers less than 25 feet in width (Figures 6.5 and 6.6). These stream reaches which lack a high quality riparian buffer are at a significantly higher risk of experiencing high rates of lateral erosion.

Pekin Brook Corridor Plan <u>Bear Creek Environmental, LLC</u>

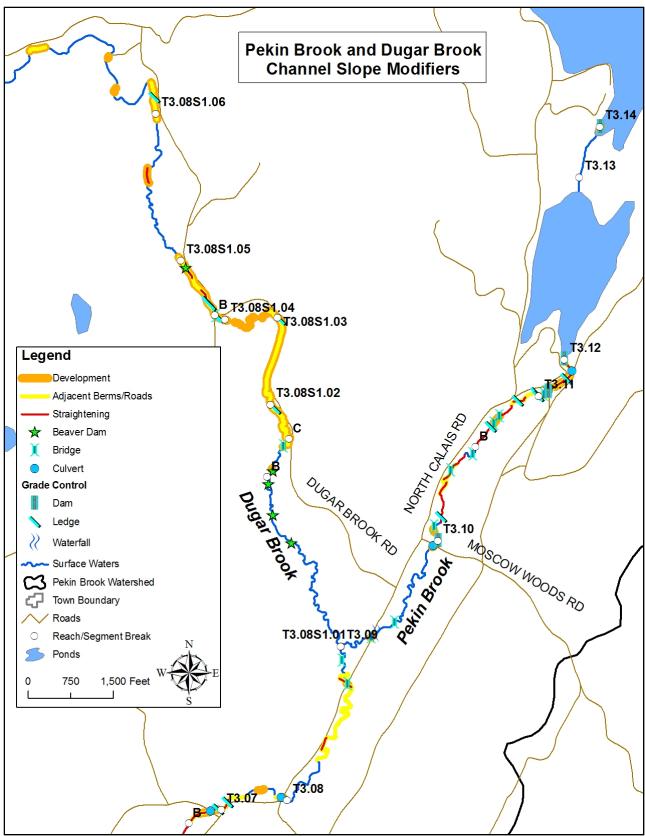


Figure 6.3. Channel slope modifiers map for the upper Pekin Brook watershed showing parameters contributing to increases (red, orange, and yellow) or decreases (blue and green) in slope.

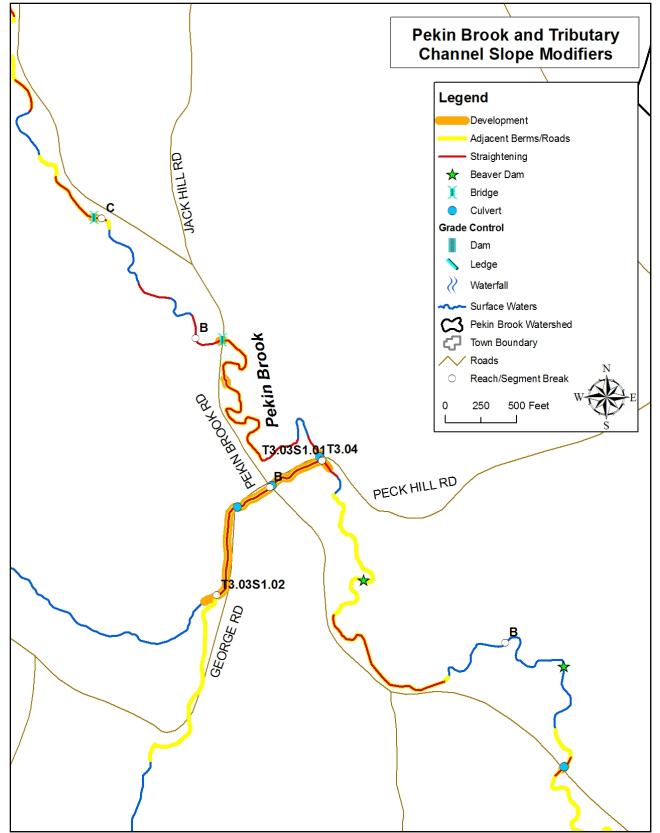


Figure 6.4. Channel slope modifiers map for the lower Pekin Brook watershed showing parameters contributing to increases (red, orange, and yellow) or decreases (blue and green) in slope.

Pekin Brook Corridor Plan Bear Creek Environmental, LLC

Figure 6.5. Boundary conditions and riparian modifications map for Pekin Brook and Dugar Brook showing areas of decreased boundary condition (red, orange, and yellow) and increased boundary condition (aqua).

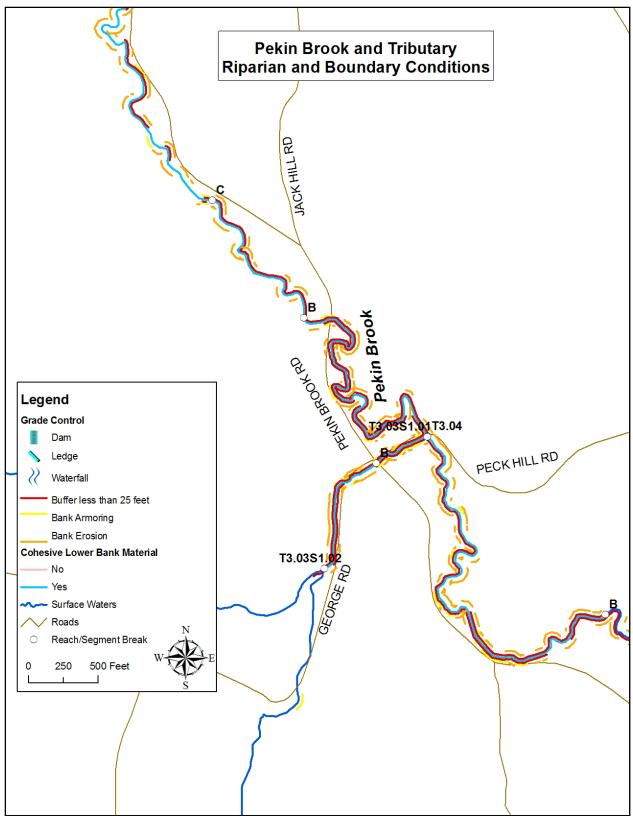


Figure 6.6. Boundary conditions and riparian modifications map for Pekin Brook and its tributary showing areas of decreased boundary condition (red, orange, and yellow) and increased boundary condition (aqua).

Parameters which are indicative of a decrease in boundary condition are shown in red, orange and yellow in Figures 6.5 and 6.6. While bank armoring may temporarily increase the boundary condition, it is indicative of where the stream power has resulted in bank erosion or widening of the channel. Extensive bank armoring may increase the stream power, resulting in erosion of banks located downstream. Areas where woody debris, bed substrate and plant material were removed from the channel also result in increased stream power.

Important factors that result in an increase in boundary condition are included in Figures 6.5 and 6.6 with aqua colored symbols. Natural and man-made grade controls increase the resistance of the bed to erosion. There were several locations where natural grade controls (ledge) were mapped based on the Phase 2 fieldwork including T3.10 and T3.11 on Pekin Brook and T3.08S1.01-C, T3.08S1.02, T3.08S1.04-A and T3.08S1.04-B on Dugar Brook. Man-made grade controls or dams were observed in T3.09 and T3.11. The cohesiveness of the lower bank materials is another factor that was considered in evaluating boundary resistance. Cohesive bank material can increase the boundary condition. The following were the only segments that had cohesive lower banks: T3.03S1.01-A, T3.03S1.01-B, T3.08S1.01-B, and T3.08S1.03.

6.2 Departure Analysis

Successful river corridor restoration and protection projects depend on a thorough understanding of the sources, volumes, and attenuation of flood flows and sediment loads within the stream network. If increased loads are transported through the network to a sensitive reach, where conflicts with human investments are creating a management expectation, little success can be expected unless the restoration design accommodates the increased load or finds a way to attenuate the loads upstream (Vermont Agency of Natural Resources, 2007a).

Within a reach, the principles of stream equilibrium dictate that stream power and sediment will tend to distribute evenly over time (Leopold, 1994). Changes or modifications to watershed inputs and hydraulic geometry create disequilibrium and lead to an uneven distribution of power and sediment. Large channel adjustments observed as dramatic erosional and depositional features may be the result of this uneven distribution of power and sediments may continue until a state of equilibrium is reached.

The analysis of sediment regimes at the watershed scale is useful for summarizing the stressors affecting the equilibrium condition of river channels. Sediment regime mapping provides a context for understanding the sediment transport and channel evolution processes which govern changes in geometry and planform for river channels in a state of disequilibrium. Sediment Regime Maps have been prepared to show departure from reference conditions due to human alterations.

The reference sediment regime map (Figure 6.7) shows the Phase I reference stream sediment conditions for each reach within the stream network. In the reference condition, streams use available floodplain access as a means to store sediment within the watershed.

All segments of the Phase 2 study area have a reference sediment regime of Coarse Equilibrium & Fine Deposition (*Equilibrium*) or Transport. The majority of the stream network has a reference sediment regime of *Equilibrium*. *Equilibrium* channels are unconfined on at least one side, and they transport and deposit sediment in equilibrium, wherein the stream power is balanced by the sediment load, sediment size, and channel boundary resistance. *Transport* channels, on the other hand, are steep, dominated by bedrock and boulder/cobble substrates, and are typically in confined valleys. Transport channels do not supply appreciable quantities of sediments to downstream reaches (Vermont Agency of Natural Resources, 2007a).

Changes in hydrology (such as development and agriculture within the riparian corridor) and sediment storage within the watershed have altered the reference sediment regime types for some segments. All departures were derived from the DMS according to the sediment regime criteria established by the Vermont Agency of Natural Resources (2007a). Existing sediment regimes have not been established for reaches that were not assessed during the phase 2 stream geomorphic assessment. Many segments that were Coarse Equilibrium (in=out) & Fine Deposition type segments by reference have been converted to Fine Source and Transport & Coarse Deposition sediment regimes based on the Phase 2 Stream Geomorphic Assessment data (Figure 6.8). This means that most fine sediment entering the stream is transported through without being deposited as a result of channel incision and reduced floodplain access. Additionally, coarse sediment storage is increased due to increased load along with lower transport capacity. One segment, T3.03S1.01-A, near the mouth of the tributary to Pekin Brook, was converted to Unconfined Source & Transport. Due to the boundary resistance from bank armoring, T3.03S1.01-A is not a significant source of sediment. There is, however, some bank erosion; and sediment storage is negligible due to the incision and loss of floodplain access. Segment T3.06-A, which was assessed in 2007, has been converted to Unconfined Source & Transport sediment regime due to increased transport capacity derived from bank armoring and channel straightening in the vicinity of the former Calais Town Hall. These channel management practices have resulted in reduced attenuation of flood waters and sediment.

The existing sediment regime for the Pekin Brook watershed includes reduced floodplain access, increased stream power, reduced boundary resistance, and lateral constraints, such as roads, at various locations throughout the stream network. Watersheds which have lost attenuation or sediment storage areas, due to human related constraints, are generally more sensitive to erosion hazards, transport greater quantities of sediment and nutrients to receiving waters, and lack the sediment storage and distribution processes that create and maintain habitat (Vermont Agency of Natural Resources, 2007a).

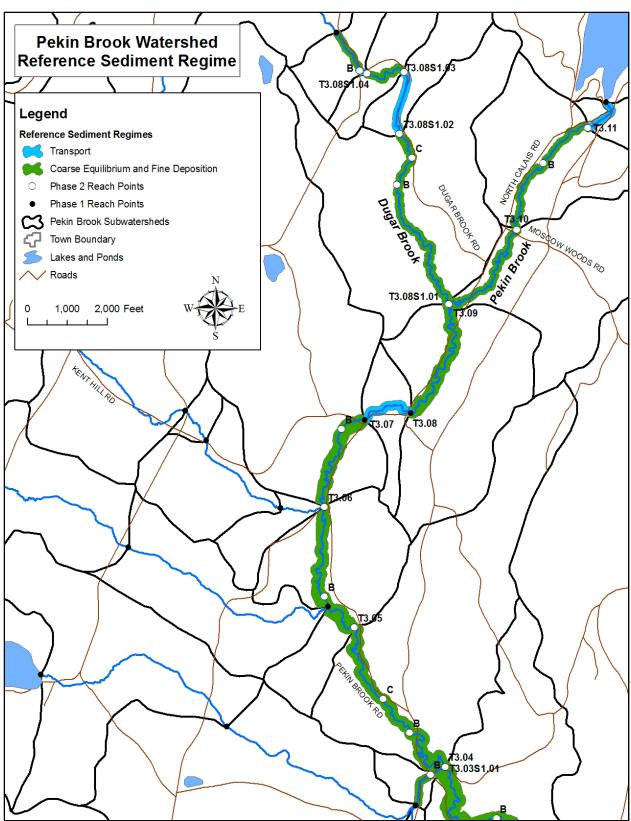


Figure 6.7. Reference Sediment Regime Departure Map showing areas of coarse equilibrium and fine deposition and transport reaches

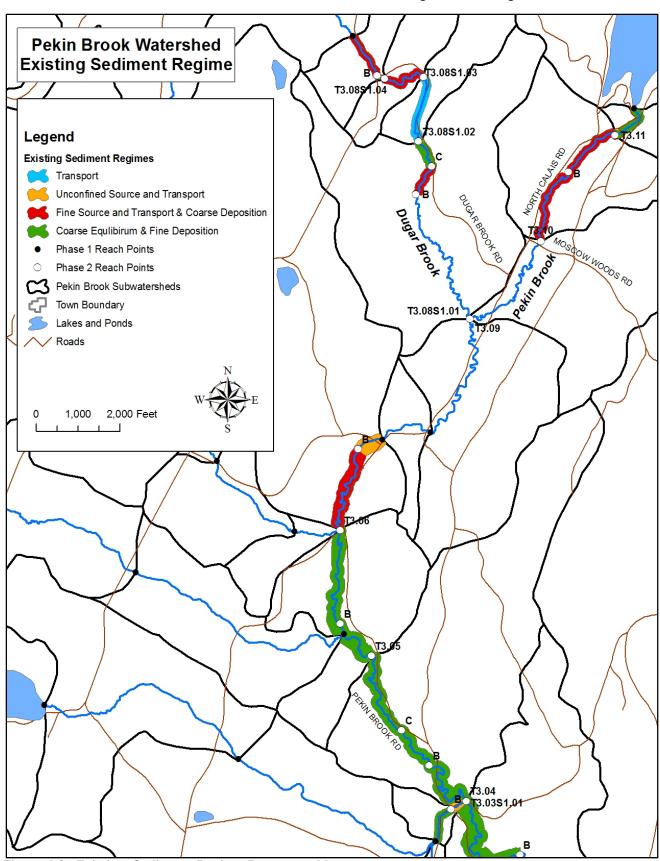


Figure 6.8. Existing Sediment Regime Departure Map

6.3 Sensitivity Analysis

Stream sensitivity refers to the likelihood that a stream will respond to a watershed or local disturbance or stressor, such as: floodplain encroachment, channel straightening or armoring, changes in sediment or flow inputs, and/or disturbance of riparian vegetation (Vermont Agency of Natural Resources, 2007b).

Assigning a sensitivity rating to a stream is done with the assumption that some streams, due to their setting and location within the watershed, are more likely to be in an episodic, rapid, and/or measurable state of change or adjustment. A stream's inherent sensitivity may be heightened when human activities alter the setting characteristics that influence a stream's natural adjustment rate including: boundary conditions; sediment and flow regimes; and the degree of confinement within the valley. Streams that are currently in adjustment, especially those undergoing degradation or aggradation, may become acutely sensitive (Vermont Agency of Natural Resources, 2007b). Stream sensitivity is assigned based on the existing stream type and condition. For a particular stream type, a segment in "reference" or "good" condition has a lower sensitivity than a reach in "fair" condition. The highest sensitivity is assigned for segments in poor condition and reaches which have undergone a stream type departure.

There are many variables that are contributing to the sensitivity of the reaches in the Pekin Brook watershed. In some reaches, the lack of bedrock and cohesive lower banks decrease the resistance to lateral and vertical adjustments; thereby, making the channel more sensitive. Additionally, bank vegetation and roots which hold the soil are lacking especially along Pekin Brook and its tributary along George Road. Reaches that are lacking high quality riparian vegetation are more sensitive to channel adjustment.

The location and slope of a stream affects its morphology and sensitivity. Streams that are transporting sediment through the channel are less sensitive than streams that are storing and responding to sediment. Low gradient streams, like lower Pekin Brook and Dugar Brook, with high sediment supplies are very sensitive and may undergo adjustment following minor changes in channel geometry or boundary condition. Additionally, flow regime and floodplain constrictions may be affecting the sensitivity of the Pekin Brook watershed. Changes in land use and land cover that increase impervious cover, peak discharges, and/or the frequency of high flows will heighten a stream's sensitivity to change and adjustment. Confinement becomes a significant sensitivity concern when structures such as roads, railroads, and berms significantly change the confinement ratio, reduce or restrict a stream's access to floodplain, and result in higher stream power during flood stage.

Page 35 Central Vermont Regional Planning Commission

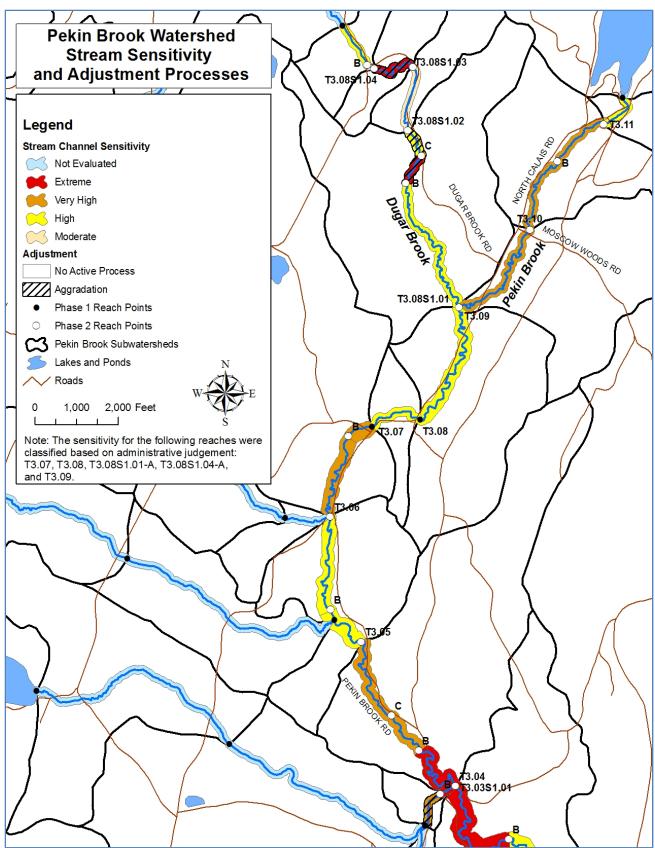


Figure 6.9. Stream sensitivity and current adjustment of the Pekin Brook Watershed

Figure 6.9 is a map presenting the stream sensitivity, generalized according to stream type and condition as per the VANR protocol, and current adjustments for each reach segment in the Pekin Brook watershed. Sensitivity ratings have not been assigned for bedrock dominated segments, impounded segments, and segments without landowner permission that were not assessed. Segments T3.08S1.01-B, T3.08S1.03, and T3.03S1.01-A are gravel dominated "E" channels that are in "fair" geomorphic condition. The "fair" condition has resulted in a change in sensitivity from high to extreme (Figure 6.9). Since the following segments were in "fair" geomorphic condition, there was a change in sensitivity to very high: T3.10-A, T3.10-B, and T3.03S1.01-B. In the most upstream Phase 2 reach on Pekin Brook, T3.11, a sensitivity change from moderate to high was assigned due to its "fair" condition. Segment T3.03S1.04-B, a cobble dominated segment, has undergone a sensitivity change (moderate to high) because of a stream type departure from a "C" channel to a "B" channel in places. This stream type departure is attributed to historic incision and the encroachment of Dugar Brook Road. Major aggradation adjustment processes are displayed on the corridor where they were found to be actively occurring and not evaluated as historic. Aggradation is a current major active process for three segments (T3.08S1.01-B, T3.08SI.0I-C, and T3.08SI.03) on Dugar Brook and one segment (T3.03SI.0I-B) on the tributary to Pekin Brook. This information is useful in prioritizing the implementation of the projects identified in Section 7 of this report, as certain management actions may be influenced by these active adjustment processes.

7.0 PRELIMINARY PROJECT IDENTIFICATION AND PRIORITIZATION

The departure and sensitivity analyses presented in Section 6.0 of this report provide beneficial background for selecting potential projects that will effectively help the channel return to equilibrium conditions by assessing limiting factors and by identifying underlying causes of channel instability. The stream reaches evaluated in this study present a variety of planning and management strategies which can be classified under one of the following categories: Active Geomorphic Restoration, Passive Geomorphic Restoration, and Conservation.

<u>Active Geomorphic Restoration</u> implies the management of rivers to a state of geomorphic equilibrium through active, physical alteration of the channel and/or floodplain. Often this approach involves the removal or reduction of human constructed constraints or the construction of meanders, floodplains or stable banks. Active riparian buffer revegetation and long-term protection of a river corridor is essential to this alternative.

<u>Passive Geomorphic Restoration</u> allows rivers to return to a state of geomorphic equilibrium by removing factors adversely impacting the river and subsequently using the river's own energy and watershed inputs to re-establish its meanders, floodplains and equilibrium conditions. In many cases, passive restoration projects may require varying degrees of active measures to achieve the ideal results. Active riparian buffer revegetation and long-term protection of a river corridor is also essential to this alternative. <u>Conservation</u> is an option to consider when stream conditions are generally good and nearing a state of dynamic equilibrium. Typically, conservation is applied to minimally disturbed stream reaches where river structure and function and vegetation associations are relatively intact.

There are a number of voluntary programs available for river protection. Two of the primary programs are the Conservation Reserve Enhancement Program (CREP) and the River Corridor Easement (RCE). CREP is a program that helps protect environmentally sensitive land, decrease erosion, and restore wildlife habitat by taking land out of agricultural production. An overview of the Conservation Reserve Enhancement Program is found at http://www.fsa.usda.gov/FSA/webapp?area=home&subject=lown&topic=cep. The River Corridor Easement is designed to promote the long term physical stability of the river by allowing the river to achieve a state of equilibrium (where sediment and water loads are in balance). River corridor easements are vital for a passive geomorphic restoration approach and can also be used for conserving rivers that are in good condition (equilibrium). Rivers that are in equilibrium have access to their floodplains and therefore experience less erosion and negative impacts from flooding events. A description of each of the programs prepared by the Vermont River Management Program is provided below.

Conservation Reserve Enhancement Program

- CREP can be either a 15 or 30 year contract to plant trees.
- 90% of the practice costs are covered with the remaining 10% either resting with the participants or could be paid by the US Partners for Fish and Wildlife. Examples of the practice costs include fencing, watering facilities, and trees. There are some costs that are capped, but generally all the practice costs can be paid through the program.
- To provide additional incentives to enroll in CREP, the program offers upfront and annual rental payments for the land where agricultural production is lost during the contract period.

River Corridor Easement (RCE)

- Easements are in perpetuity, meaning the agreement stays with the land forever.
- A onetime payment is received by the landowner for transferal of channel management rights to a second party (a land trust).
- Transferal of channel management rights means that the landowner would no longer be able to rock line river banks or remove gravel for personal use.
- A management plan accompanies the easement outlining the management and land use practices expected to occur within the corridor and describe any accommodations that must be made for existing structures (e.g. outbuildings, stream crossing, etc.).
- A RCE requires a minimum 50 foot buffer that floats with the river. No active land use is allowed within the buffer. The buffer can be actively planted or allowed to revegetate passively.
- The easement does not take away the agricultural land use rights, so the landowner could continue to crop or pasture the farm land mapped outside of the buffer, yet within the corridor, for as long as the river allows.

7. I Watershed-Level Opportunities

Fluvial Erosion Hazard Zones

Of all types of natural hazards experienced in Vermont, flash flooding represents the most frequent disaster mode and has resulted in by far the greatest magnitude of damage suffered by private property and public infrastructure. While inundation-related flood loss is a significant component of flood disasters, the predominant mode of damage is associated with the dynamic, and oftentimes catastrophic, physical adjustment of stream channel dimensions and location during storm events due to bed and bank erosion, debris and ice jams, structural failures, flow diversion, or flow modification by man-made structures. These channel adjustments and their devastating consequences have frequently been documented wherein such adjustments are related to historic channel management activities, floodplain encroachments, adjacent land use practices and/or changes to watershed hydrology associated with land use and drainage.

The purpose of defining Fluvial Erosion Hazard Zones is to prevent increases in fluvial erosion resulting from uncontrolled development in identified fluvial erosion hazard areas; minimize property loss and damage due to fluvial erosion; prohibit land uses and development in fluvial erosion hazard areas that pose a danger to health and safety; and discourage the acquisition of property that is unsuited for the intended purposes due to fluvial erosion hazards. The basis of a Fluvial Erosion Hazard Zone is a defined river corridor which includes the course of a river and its adjacent lands. The width of the corridor is defined by the lateral extent of the river meanders, called the meander belt width, which is governed by valley landforms, surficial geology, and the length and slope requirements of the river channel. The width of the corridor is also governed by the stream type and sensitivity of the stream. River corridors, defined through VTANR Stream Geomorphic Assessment (2007b), are intended to provide landowners, land use planners, and river managers with a meander belt width which would accommodate the meanders and slope of a balanced or equilibrium channel, which when achieved, would serve to maximize channel stability and minimize fluvial erosion hazards. Information collected during the Phase 2 Assessment including reach sensitivity, reach condition, and stream type is used to develop these zones. Towns have the opportunity to work with the Vermont River Management Program to develop fluvial erosion hazard zones to reduce conflicts within the river corridor.

Figure 7.1 displays the Draft Fluvial Erosion Hazard Zones for the Pekin Brook watershed. The map includes a legend that provides the erosion potential from moderate erosion hazard to extreme erosion hazard. As previously discussed in Section 6.3, the sensitivity ratings are based on stream type and condition. The corridor widths used to generate the draft fluvial erosion hazard zones for the Pekin Brook watershed are based on the recommendations presented in the document, "River Corridor Protection: A Vermont Technical Guide", prepared by the Vermont River Management Program (Vermont Agency of Natural Resources, 2008). Dan Currier of the Central Vermont Regional Planning Commission and Gretchen Alexander of the Vermont Agency of Natural Resources, River Management Program worked together to develop the draft Fluvial Erosion Hazard Zones.

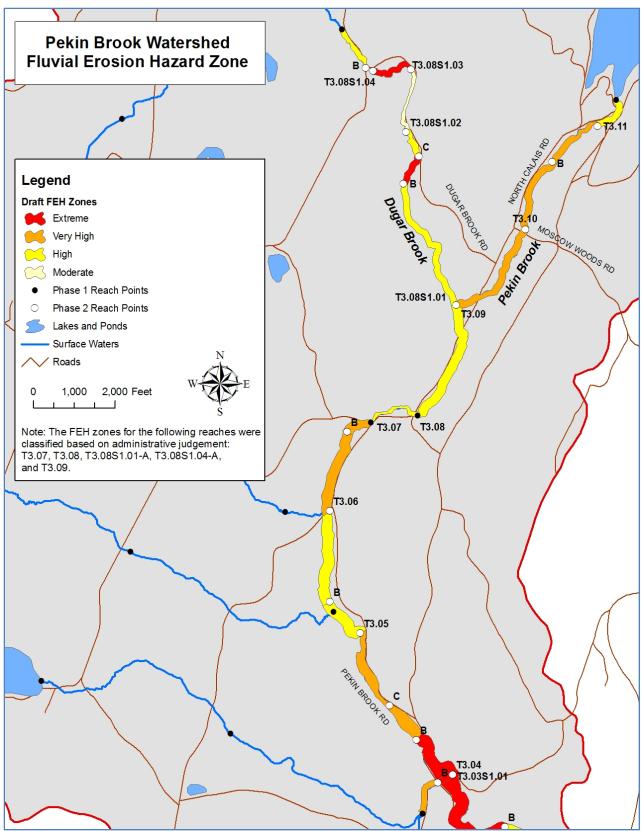


Figure 7.1: Draft Fluvial Erosion Hazard Zone Map for Pekin Brook Watershed (FEH zones created by Dan Currier of CVRPC and Gretchen Alexander of VANR)

STORMWATER

Stormwater runoff rates are of particular concern in urbanized and agricultural watersheds because stormwater runs off from impervious surfaces rather than naturally infiltrating the soil. The cumulative effect of the increased frequency, volume, and rate of stormwater runoff results in increases in wash-off pollutant loading to streams and destabilization of stream channels. All potential restoration projects within the Pekin Brook watershed should be evaluated in terms of their effects on stormwater.

7.2 Reach-Level Opportunities

A description of each reach/segment is provided in this section along with general recommendations for restoration and protection strategies. The reaches are listed from downstream to upstream. Further details about project types for each reach will be discussed in Section 7.3. The reaches are broken into sections based on the stream in which they are located: Tributary to Pekin Brook, Pekin Brook, and Dugar Brook.

Tributary to Pekin Brook:

Segment T3.03S1.01-A Streamside Plantings Buffer Restoration River Corridor Protection CREP

T3.03S1.01-A is a 430 foot long segment, which begins at the confluence of Pekin Brook and continues until the George Road crossing. Segment T3.03S1.01-A is an "E" channel with a poor riparian zone that has experienced major historic degradation and whose planform has been completely altered due to the straightening. Adequate buffers are lacking due to the encroachment of Peck Hill Road and George Road; hay fields line the eastern bank. The riffle-pool bedform is weak and is plane bed in places. The upper part of the segment, just downstream from George Road crossing contains a mass failure.

Figure 7.2. Straightened section and plane bed features in T3.03S1.01-A

Figure 7.3. Agricultural land use within the corridor of T3.03S1.01-B

Segment T3.03S1.01-B Streamside Plantings Buffer Restoration River Corridor Protection CREP

T3.03S1.01-B begins at the George Road crossing and continues approximately 1000 feet until the confluence with an unnamed tributary. The stream type for T3.03S1.01-B is "C". Segment T3.03S1.01-B has been extensively straightened and adequate buffers are lacking due to grazing of cattle among the stream banks. There is considerable erosion along the banks resulting in channel widening. Although historic degradation is minor, erosion along the banks has led to major widening, aggradation and planform change. Segments T3.03S1.01-B and T3.03S1.01-A would be good locations for a CREP project due to the agricultural land use within the river corridor.

Pekin Brook:

<u>Reach T3.07</u> River Corridor Protection

T3.07 begins just upstream of the Kent Hill Road crossing. Due to lack of landowner permission, Reach T3.07 did not receive a full Phase 2 assessment. Based on administrative judgment, this is a "B" channel. There is a mass failure approximately 20 feet high by 20 feet wide on the downstream end of the reach just below a waterfall (Figure 7.4). The downstream end of the reach has been straightened and armored with rip-rap where it is close to North Calais Road (Figure 7.5).

Figure 7.4. Mass failure in reach T3.07

Figure 7.5. Straightened section of reach T3.07

<u>Reach T3.08</u> River Corridor Protection

Reach T3.08 begins just upstream from the next crossing (North Calais Road) on Pekin Brook and continues until the confluence with Dugar Brook. Similar to T3.07, Reach T3.08

did not receive a full Phase 2 assessment due to lack of landowner permission. Observations were made from two crossings along North Calais Road and from one point along the road. From all three locations, the reach appears to be a sand dominated, "E" type stream (Figure 7.6) with high sinuosity. The buffers are well vegetated with shrub/saplings except for road crossings and areas where North Calais Road encroaches the river corridor.

<u>Reach T3.09</u> River Corridor Protection Streamside Plantings Buffer Restoration

Figure 7.6. Sand dominated "E" channel in reach T3.08

Reach T3.09 starts at the confluence of Dugar Brook and continues until a rock dam just upstream of Moscow Woods Road. Only the most upstream part of the reach was accessible due to lack of landowner permission; therefore, a full Phase 2 assessment was not conducted. The beginning of the reach is well buffered with predominantly shrub/sapling vegetation and is probably a continuation of the "E" type channel in reach T3.08, but the substrate appears to be gravel dominated (Figure 7.7). The channel crosses North Calais Road and enters a short "B" stream type section (Figure 7.8) where there is a waterfall grade control. Upstream of the grade control, the channel lies within a poorly buffered valley with a hay field on the west side that is mowed right up to the stream bank (Figure 7.9). This section of the reach was classified as a "C" channel based on administrative judgment. In the upstream part of the reach, there is an old rock dam acting as a grade control, which is constricting the channel flow and holding back sediment. (Figure 7.10).

Figure 7.7. Gravel dominated "E" channel in reach T3.09

Figure 7.8. Short "B" channel section in reach T3.09

Figure 7.9. Lack of buffer in reach T3.09

Figure 7.10. Old rock dam in T3.09 causing grade control and channel constriction

Segment T3.10-A Streambank Plantings Buffer Restoration River Corridor Protection Dam Removal

Segment T3.10-A begins just upstream of the Moscow Woods Road crossing at the old rock dam and continues 2,320 feet until the channel becomes more entrenched and begins to contain step-pool bedform features. There is a small wetland section (Figure 7.11) in the downstream end of Segment T3.10-A. The wetland may have been created as a result of backwater from the downstream dam in reach T3.09. Heading upstream, the riparian area is then dominated by hay and residential lawn, which is mowed close to the streambank (Figure 7.12). Upstream from the mowed lawn, the buffer and riparian corridor contain more shrub/saplings. Buffers less than 25 feet make up 40 percent of the east bank.

Figure 7.11. Wetland in downstream end of T3.10-A

Figure 7.12. Lack of buffer in Segment T3.10-A

Segment T3.10-A is a gravel dominated "C" channel that has experienced major historic incision as evident from its abandoned terrace at a higher elevation. There is some aggradation, but major planform adjustment is occurring as shown by the presence of a channel avulsion and neck cut-off. The channel has been altered by straightening of 60 percent its length for agriculture.

Segment T3.10-B Buffer Restoration

Segment T3.10-B begins where the reach becomes more entrenched and forested along the east side (Figure 7.13). It has a greater slope than downstream and is therefore a "Cb"

channel with step-pool features as its dominant bedform. The west side of the corridor is residential with a valley wall continuous with the stream bank in some places. There are four bedrock grade controls (Figure 7.14) with a cascade section at the top of the segment with no buffer along the west bank (Figure 7.15). Similar to its downstream segment (T3.10-A), T3.10-B has experienced major historic incision (1.51 incision ratio), but aggradation, widening and planform adjustment is minor.

Figure 7.13. Forested east bank and residential west bank in Segment T3.10-B

Figure 7.14 Grade control in Segment T3.10-B

<u>Reach T3.11</u> Buffer Restoration Streamside Plantings Dam Removal

Figure 7.15. Lack of buffer in upstream section of T3.10-B

Reach T3.11 begins at the top of a large grade control near a house along the west side of the channel and continues until the dam at No. 10 Pond (Mirror Lake). A house is located right on the bank and is acting as the valley wall (Figure 7.16). The reach continues under a bridge at TH16 and then meets another on-stream dam (Figure 7.17). There is a large pool behind the dam and considerable amounts of sediment are being held back by the dam, thereby starving the downstream segment of sediment (Figure 7.18). Large trout were observed in this pool during the Phase 2 assessment. There is another dam at the upstream end of the section at the outlet of No. 10 Pond (Figure 7.19).

Figure 7.16. House right along west bank on Reach T3.11 of Pekin Brook

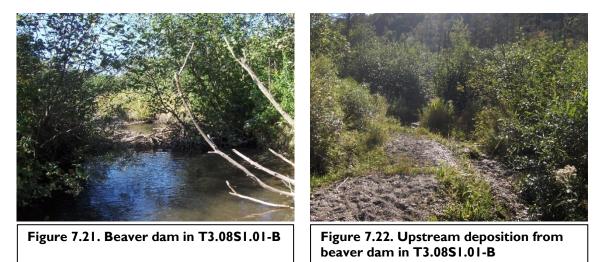
Figure 7.17. Rock dam in Reach T3.11

Figure 7.18. Sediment deposition upstream of dam on T3.11

Figure 7.19. Dam at No. 10 Pond at upstream end of T3.11

On both sides of the stream in T3.11, the river corridor is predominantly residential. Bank armoring covers 75 and 55 percent of the east and west banks, respectively. Some of the armoring is actually high rock walls. The channel has been straightened 100 percent for development, but the channel has not incised as much as the downstream reach most likely due to the presence of bedrock in the bed. Planform adjustment is major in response to the extensive straightening. This is the only reach/segment on Pekin Brook that had a "fair" RHA rating (the other two segments were scored "good" for habitat). The poor channel alteration, bank vegetative protection, and riparian vegetative buffer along the west bank mostly contributed to the "fair" condition. All segments/reaches assessed on Pekin Brook had a "fair" rating for geomorphic condition.

Dugar Brook:


<u>T3.08S1.01</u> River Corridor Protection

The lowest reach on Dugar Brook was broken into three segments. Segment T3.08S1.01-A is a wetland with numerous beaver dams and was therefore excluded from the Phase 2 Assessment due to beaver dam influence (Figure 7.20). T3.08S1.01-A begins at the confluence with Pekin Brook and continues 4,663 feet until the influence from the beaver dams ends. Segments B and C were created due to differences in banks and buffers and valley widths.

Figure 7.20. Wetland at downstream end of Dugar Brook

The middle segment in reach T3.08S1.01, T3.08S1.01-B, begins where the beaver dam influence ends and continues 900 feet to upstream of where Dugar Brook Road encroaches on the eastern corridor and vegetation changes to include more trees. T3.08S1.01-B is sinuous with a beaver dam at the downstream end causing significant deposition behind it (Figures 7.21 and 7.22). The fields along the channel were most likely historically used for agriculture and are now regenerating into shrub/saplings. There is a small wooden bridge that is used as a crossing for ATVs.

Historic incision is major in segment T3.08S1.01-B as shown by an abandoned floodplain on the west side. The channel is now building a new floodplain and is currently experiencing major aggradation as demonstrated by its numerous depositional features. A flood chute and an avulsion are evidence that planform adjustment is a major process.

The most upstream segment of T3.08S1.01, segment C, begins where the corridor is more forested and the valley wall becomes narrower. Dugar Brook Road encroaches upon the corridor on the east side for approximately 20 percent of the segment. There is a bedrock grade control at the upstream end of the segment (Figure 7.23).

T8.08S1.01-C has not incised like the downstream segments most likely due to the presence of the grade control. However, there are many large depositional features, some of which are higher than half the bankfull elevation (Figure 7.24), indicating aggradation as a major process. The sediment transport capacity has therefore been exceeded. Since Segment T8.08S1.01-C is mostly aggradational, the channel evolution model is D-IId. All other geomorphic processes are minor. Aside from the road encroachment, Segment T8.08S1.01-C has a riparian buffer in good condition.

Page 48 Central Vermont Regional Planning Commission

Figure 7.23. Bedrock grade control in upper part of T3.08S1.01-C

Figure 7.24. Large side bar indicating major aggradation in Segment T3.08S1.01-C

Reach T3.08S1.02 River Corridor Protection Stormwater Management

Reach T3.08S1.02 begins just upstream of the bedrock grade control and continues until the valley becomes wider above the next series of bedrock grade controls. Dugar Brook Road encroaches upon the entire length of the eastern corridor. Buffers less than 25 feet comprise 50 percent of the reach on the east side. Aside from the placement of the road, the river corridor is well forested. The channel appears to be naturally straight and is a moderately entrenched "B" type channel (Figure 7.25).

Bedrock grade controls have prevented the reach from incising (Figure 7.26). The top of the reach contains a cascade with series of bedrock grade controls that is holding back sediment. At the upstream end of the cascade there used to be an old mill dam, which is no longer present. The reach is in "good" condition and all adjustment processes are minor. Since the river corridor is well forested except for the road, protecting the river corridor is important to maintain the high quality riparian corridor.

Figure 7.25 Typical "B" channel in Reach 7.308 Typical "B" channel in 13.085 1.02 most likely naturally straight

Figure 7.26. Series of bedrock grade controls in T3.08S1.02

River Corridor Protection

Reach T3.08S1.03 begins at the top of the bedrock grade controls where the valley becomes much wider and continues until a small bedrock gorge. The bedrock grade control in the downstream reach is holding back sediment. According to local residents, the channel was impounded by a dam at bottom of the reach. The dam is now removed, but is likely the cause of the considerable sediment retention (Figure 7.27). The channel is most likely re-adjusting from being impounded and is now seeking equilibrium.

Figure 7.27. Deposition in T3.08S1.03 upstream from bedrock grade controls and former dam

Figure 7.28. Flood chute in reach T3.08S1.03

The buffers in T3.08S1.03 are well vegeated with shrub/sapling dominant on the east side and forest dominant on the west side. The channel exhibits an "E" type morphology that has historically incised. The active channel adjustment processes include major aggradation, widening, and planform adjustment. There are many large side bars and two flood chutes (Figure 7.28).

<u>Reach T3.08S1.04</u> River Corridor Protection Bridge Replacement

The fourth reach on Dugar Brook was divided into two segments due to a bedrock gorge in the first 200 feet (Figure 7.29). Segment T3.08S1.04-A is a bedrock gorge and, therefore, was not assessed. The segment begins at the start of the bedrock and continues until the Apple Hill Road Bridge. There is one small mass failure associated with rip-rap falling in at the bridge crossing at Apple Hill Road (Figure 7.30).

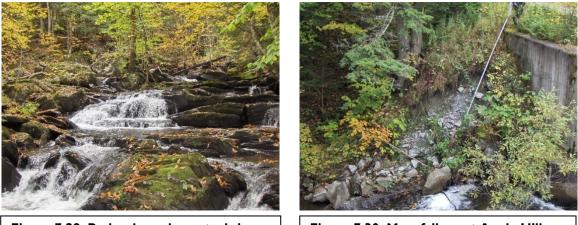


Figure 7.29. Bedrock grade controls in T3.08SI.04-A

Figure 7.30. Mass failure at Apple Hill Road crossing in T3.08SI.04-A

The next segment, T3.08S1.04-B, begins at Apple Hill Road and continues until the stream reaches a beaver dam at a wetland. The channel alternates between a "B" and a "Cb" morphology in stage II-III of the F channel evolution model. In some places along the segment the channel is naturally a "B", but at other times the entrenchment has changed due to the placement of Dugar Brook Road and there is a stream type departure from a "C" to a "B" channel. This departure mostly occurs at the downstream and upstream ends of the segment.

Figure 7.31. Straightened section of Dugar Brook just upstream of Apple Hill Road crossing with armoring on left bank

Figure 7.32. Plane bed section of Dugar Brook in segment T3.08S1.04-B

The channel in segment T3.08S1.04-B has been straightened and is heavily armored with riprap on the east side of the channel (Figure 7.31). The riparian buffer on the west side is high quality with mostly forested land, but the east side has a buffer less than 25 feet for 70 percent of its length due to Dugar Brook Road. Channel straightening has led to major historic incision, but the other adjustment processes have remained minor. This was the only segment on Dugar Brook that came out "fair" for the RHA. The "fair" habitat condition is mostly due to the extensive channel alteration, the narrow riparian buffer and lack of bank vegetative protection on the east side, and reduced cover for fish and aquatic organisms. The RGA scored "fair" mostly due to major historic incision. Segment T3.08S1.04-B has a weak riffle-pool sequence in spots with more of a plane bed bedform (Figure 7.32).

7.3 Site Level Opportunities

Site specific projects were identified using the criteria outlined by the ANR in Chapter 6 – Preliminary Identification and Prioritization (Vermont Agency of Natural Resources 2007a). This planning guide is intended to aid in the development of projects that protect and restore river equilibrium. The site level projects that were developed for the Pekin Brook watershed are provided below in Table 7. High priority projects include river corridor protection to provide attenuation of sediment and floodwaters through conservation and corridor easements, riparian buffer improvement areas, and the replacement or retrofitting of undersized stream crossing structures. Information from the Phase 2 stream geomorphic assessment and ANR bridge and culvert assessment could be used to inform the Town of Calais of which stream crossings are contributing to localized instability.

The project strategy, technical feasibility, and priority for each project are listed by project number and reach. A total of 18 projects were identified to promote the restoration or projection of channel stability and aquatic habitat in the Pekin Brook watershed. Table 7 provides information for each project, including the project strategy, technical feasibility, and general cost. The projects are broken down by category as follows: 10 passive restoration (river corridor protection, streamside plantings or buffer improvement projects); 8 active restoration (5 bridge or culvert replacement or retrofit projects, 2 dam removal projects, and one mass failure stabilization project). The project locations and categories identified for Pekin Brook, Dugar Brook, and the unnamed tributary to Pekin Brook are depicted below in Figure 7.33. The projects include:

Unnamed Tributary to Pekin Brook

- **Passive Restoration** with river corridor protection, streamside plantings, and fencing out livestock through CREP program from confluence of Pekin Brook to the confluence with a small tributary near the dairy farm (project #1);
- Active Restoration by replacing undersized culvert at Pekin Brook Road that is causing localized geomorphic instability (project #2);
- Active Restoration by replacing undersized culvert at George Road that is causing localized geomorphic instability (project #3).

<u>Pekin Brook</u>

- **Passive Restoration** with river corridor protection from just upstream of Kent Hill Road to where forested buffer ends (project #4);
- **Passive Restoration** with river corridor protection and natural buffer regeneration and/or plantings from just upstream of waterfall where forested buffer ends to Moscow Woods Road (project #5);
- Active Restoration by replacing undersized culvert at Moscow Wood Road that is causing localized geomorphic instability (project #6);
- Active Restoration by removing dam near Moscow Woods Road (project #7);
- **Passive Restoration** with river corridor protection and natural buffer regeneration from the crossing at Moscow Woods Road to rock bridge; streamside plantings just downstream from bridge (project #8);
- **Passive Restoration** with river corridor protection from rock bridge to just downstream of TH16 crossing (project #9);
- **Passive Restoration** with streamside plantings and rip rap removal just downstream of TH16 crossing (project #10);
- Active Restoration by replacing undersized bridge at TH16 crossing that is causing localized geomorphic instability (project #11);
- Active Restoration by removing dam near TH16 (project #12);
- **Passive Restoration** by establishing fluvial erosion overlay district from just downstream of TH16 to No. 10 Pond (project #13).

Dugar Brook

- **Passive Restoration** with river corridor protection from confluence with Pekin Brook to end of beaver dam influence (project #14);
- **Passive Restoration** with river corridor protection and riparian buffer though natural regeneration from end of beaver dam influence to beginning of forested corridor (project #15);
- **Passive Restoration** of river corridor from top of forested area to wetland area upstream of Apple Hill Road crossing (project #16);
- Active Restoration by installing netting and planting on west bank where there is a mass failure from the bridge (project #17);
- Active Restoration by replacing undersized bridge at private driveway that is causing localized geomorphic instability (project #18).

Page 53 Central Vermont Regional Planning Commission

	Table 7. Pekin Brook Site Level Opportunities for Restoration and Protection Calais, Vermont											
Project # Segment	Type of Project	Site Description Including Stressors and Constraints	Project or Strategy Description	Technical Feasibility and Priority	Other Social Benefits	Costs	Land Use Conversion	Potential Partners				
#1 From confluence with Pekin Brook to tributary confluence T3.03S1.01-A and T3.03S1.01-B	Passive Restoration	Reach impacted by farming operations. No buffer due to haying and cow pasturing.	Protect River Corridor through corridor easement and/or CREP; improve riparian buffer with streamside plantings.	High priority for corridor easement (natural attenuation area). High priority for plantings; establish no mow zone	Flood and sediment attenuation; prevent erosion, improve habitat and reduce water temperature	Cost of conservation easement. Low cost of plantings or no cost to stop mowing. Cost of fencing.	Hay fields and cow pasture to forested buffer	ANR, CVRPC, landowners, CREP, land trust, FWR, Calais Conservation Commission (CCC)				
#2 Pekin Brook Road crossing T3.0351.01-A	Active Restoration	The Pekin Brook Road culvert was found to be partially compatible using the geomorphic screening tool. Downstream scour is an issue with the culvert.	Culvert Replacement	Moderate priority	Improved geomorphic stability	High cost for replacement	Unknown	Town of Calais, ANR, CVRPC				
#3 George Road crossing T3.03S1.01-B	Active Restoration	The George Road culvert was found to be mostly incompatible using the geomorphic screening tool. Upstream and downstream deposition and downstream scour are issues with the culvert.	Culvert Replacement	High priority	Improved geomorphic stability	High cost for replacement	Unknown	Town of Calais, ANR, CVRPC				
#4 From North Calais Road crossing to end of forested buffer T3.07 through downstream end of T3.09	Passive Restoration	Except for road crossings and encroachment, high quality shrub/sapling buffer and forested buffer on upstream end.	Protect River Corridor through corridor easement	High priority	Flood and sediment attenuation	Cost of corridor easements	Maintain current dominant shrub/sapling or forested vegetation	ANR, CVRPC, landowners, land trust, FWR, CCC				

Page 54 Central Vermont Regional Planning Commission

	Table 7. Pekin Brook Site Level Opportunities for Restoration and Protection Calais, Vermont											
Project # Segment	Type of Project	Site Description Including Stressors and Constraints	Project or Strategy Description	Technical Feasibility and Priority	Other Social Benefits	Costs	Land Use Conversion	Potential Partners				
#5 From just upstream of North Calais Road crossing where forested buffer ends to Moscow Woods Road crossing	Passive Restoration	Hay fields on west side then some residential lawn area lacking riparian vegetation.	Protect River Corridor through corridor easement; Buffer restoration – Natural Regeneration: Increase buffer width where feasible with low cost plantings or let vegetation grow back on its own.	High priority for corridor easement and buffer regeneration; establish no mow zone.	Flood and sediment attenuation; Improve water quality.	Cost of corridor easements; low cost for buffer improvement. No cost for no mow zone.	Hay fields and residential lawn to forested	ANR, CVRPC, landowners, land trust, FWR, CCC				
Т3.09												
#6 Moscow Woods Road crossing	Active Restoration	The Moscow Woods Road culvert was found to be partially compatible using the geomorphic screening tool. Upstream and downstream scour are issues with the culvert.	Culvert Replacement	Moderate priority	Improved geomorphic stability	High cost for replacement	Unknown	Town of Calais, ANR, CVRPC				
T3.09												
#7 Just upstream of Moscow Woods Road crossing	Active Restoration	Dam is about 8 feet high and a fish passage issue. Abutments are causing channel constriction. Wetland just upstream from dam and sediment retention above dam.	Alternative analysis for dam removal	High priority due to fish passage issue and sediment retention.	Improve habitat and geomorphic stability	Cost of alternative analysis and dam destruction	Dam to natural stream channel	ANR, CVRPC, landowners, Town of Calais, FWR				
T3.10-A												

Page 55 Central Vermont Regional Planning Commission

	Table 7. Pekin Brook Site Level Opportunities for Restoration and Protection Calais, Vermont											
Project # Segment	Type of Project	Site Description Including Stressors and Constraints	Project or Strategy Description	Technical Feasibility and Priority	Other Social Benefits	Costs	Land Use Conversion	Potential Partners				
#8 From Moscow Woods Road to rock bridge across Pekin Brook.	Passive Restoration	Hay fields on downstream end then some residential lawn area lacking riparian vegetation.	Protect River Corridor through corridor easement; Buffer restoration – Natural Regeneration: Increase buffer width where feasible with low cost plantings or let vegetation grow back on its own. Streamside plantings in T3.10-A just downstream of rock	High priority for corridor easement; High priority for plantings in T3.10-A and no mow zone.	Flood and sediment attenuation; Improve water quality.	Cost of corridor easements; Low cost for buffer improvement. No cost for no mow zone.	Hay fields and residential lawn to forested	ANR, CVRPC, landowners, land trust, FWR, CCC				
T3.10-A #9	Passive	Shrub/sapling river	bridge on east side. Protect River	High priority	Flood and sediment	Cost of	No new	ANR, CVRPC,				
From rock bridge to where valley gets narrower just downstream of TH16.	Restoration	corridor on west side and forested on right side.	Corridor through corridor easement.	for corridor easement.	attenuation	conservation easement	structures in corridor	landowners, land trust, FWR, CCC				
T3.10-B	Deserius		Course and the structures	l link - ni - nite -	Flag d and as diment	l ann an that	Desidential laura	ANR, CVRPC,				
#10 Just downstream of TH16 T3.11	Passive Restoration	Lack of buffer due to residential lawn. Armored with rip-rap that is holding back water before bedrock grade control	Streamside plantings and riprap removal	High priority plantings.	Flood and sediment attenuation.	Low cost of plantings	Residential lawn to forested buffer	ANR, CVRPC, landowners, FWR, CCC				
#11 TH16 crossing T3.11	Active Restoration	The width of the TH16 bridge is 23 percent of the bankfull width. There is an alignment issue with the structure.	Bridge Replacement	Moderate priority	Improved geomorphic stability	High cost for replacement	Unknown	Town of Calais ANR, CVRPC				

Page 56 Central Vermont Regional Planning Commission

	Table 7. Pekin Brook Site Level Opportunities for Restoration and Protection Calais, Vermont										
Project # Segment	Type of Project	Site Description Including Stressors and Constraints	Project or Strategy Description	Technical Feasibility and Priority	Other Social Benefits	Costs	Land Use Conversion	Potential Partners			
#12 Old dam just upstream of TH16 crossing T3.11	Active Restoration	Old dam with 9 foot drop and two in-dam culverts is a fish passage issue. Significant deposition upstream of dam.	Alternative analysis for dam removal	High priority	Improve habitat and geomorphic stability	Cost of alternative analysis and dam destruction	Dammed stream to natural stream channel	ANR, CVRPC, landowners, Town of Calais. FWR			
#13 From just downstream of TH16 crossing to No. 10 Pond	Passive Restoration	Residential land use here has multiple landowners along Pekin Brook in the Village of North Calais and is well suited for a fluvial erosion overlay district.	Fluvial Erosion (FEH) overlay district	High priority for corridor protection as FEH overlay district due to multiple landowners	Reduced fluvial erosion hazard and property damage	Unknown	No new structures in corridor	ANR, CVRPC, Town of Calais, CCC			
#14 From confluence with Pekin Brook to where beaver dam influence ends.	Conservation	Wetland area due to series of beaver dams	Protect River Corridor through corridor easement	Low priority for conservation easement; wetland provides natural protection	Flood and sediment attenuation	Cost of corridor easements	No new structures in corridor	ANR, CVRPC, landowners, land trust, FWR, CCC			
T3.08S1.01-A #15 From where beaver dam influence ends to where corridor becomes more forested T3.08S1.01-B	Passive Restoration	Old hay fields lacking some riparian vegetation in river corridor.	Protect River Corridor through corridor easement; Buffer restoration – Natural Regeneration: Increase buffer width where feasible with Iow cost plantings or let vegetation grow back on its own.	High priority for corridor easement; moderate priority for plantings.	Flood and sediment attenuation; improve water quality.	Cost of corridor easements; low cost for buffer improvement.	Herbaceous to forested	ANR, CVRPC, landowners, land trust, FWR, CCC			

Page 57

Central Vermont Regional Planning Commission

	Та	able 7. Pekin Bi	rook Site Level	Opportuniti	es for Restoration	and Protec	tion	
			С	alais, Vermo	ont			
Project # Segment	Type of Project	Site Description Including Stressors and Constraints	Project or Strategy Description	Technical Feasibility and Priority	Other Social Benefits	Costs	Land Use Conversion	Potential Partners
# 16 From where corridor becomes forested to wetland area upstream of Apple Hill Road crossing T3.08S1.01-C through T3.08S1.04-B	Passive Restoration	High quality riparian buffers except where Dugar Brook Road encroaches upon the river corridor. Well forested or shrub/sapling vegetation and numerous bedrock grade controls.	Protect River Corridor	High priority for conservation easement.	Flood and sediment attenuation and improve sediment transport	Cost of conservation easement	No new structures in corridor	ANR, CVRPC, landowners, land trust, FWR, CCC
#17 Just downstream of Apple Hill Road crossing T3.08S1.04-A	Active Restoration	Mass failure just downstream of Apple Hill Road bridge due to rip- rap failure	Install netting and plants to arrest erosion	Low priority	Prevent erosion	Low cost for plantings and netting	Unknown	ANR, CVRPC, landowners, FWR
#18 Private driveway crossing just downstream of wetland area T3.08S1.04-B	Active Restoration	The width of the private driveway bridge is 10 percent of the bankfull width. There is debris blocking the two openings on the upstream end of the structure	Bridge Replacement	High priority	Improved geomorphic stability	High cost for replacement	Unknown	ANR, CVRPC, landowner

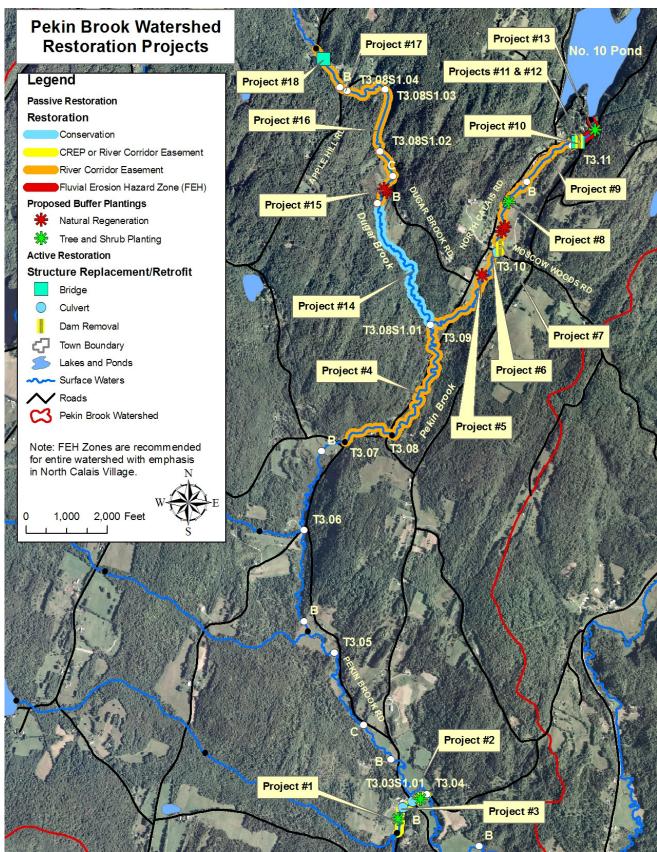


Figure 7.33. Proposed restoration and protection projects for the Pekin Brook Watershed

7.4 Next Steps

There are many opportunities to restore Pekin Brook and its tributaries to a stable condition. Types of reach level and site level projects that have been identified in this plan include river corridor protection, streamside plants, retrofit and/or replacement of stream crossings, and dam removal. On the watershed level, the development and implementation of fluvial erosion hazard zones is recommended to avoid conflicts regarding land use and to save money spent on flood damage and river maintenance. The Town of Calais could pursue the opportunity to work with the CVRPC and the Vermont River Management Program to develop fluvial erosion hazard zones for the land surrounding Pekin Brook and its tributaries. Fluvial erosion hazard zones are recommended for the entire watershed, and would be most beneficial in the Village of North Calais where there are multiple property owners within the corridor. The following are recommendations for next steps:

- 1. Outreach to private landowners and the public about the plan and potential restoration and protection opportunities to be completed by the State and/or CVRPC.
- 2. Town, State, CVRPC, and FWR representatives meet to discuss the various restoration and protection opportunities and set priorities for action.
- 3. Meetings to be held with additional partners (Winooski Natural Resources Conservation District, Department of Agriculture, Natural Resources Conservation Service, Vermont Agency of Transportation, etc.) to discuss implementation of priority projects.
- 4. Summary and prioritization of potential projects.
- 5. Implementation of priority projects with project partners and landowners.

For additional information about fluvial erosion hazard (FEH) zones or project development, please contact the CVRPC:

Central Vermont Regional Planning Commission 29 Main Street Montpelier, VT 05602

(802)229-0389

www.centralvtplanning.org

8.0 Glossary of Terms

Adapted from:

Restoration Terms, by Craig Fischenich, February, 2000, USAE Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180 And

Vermont Stream Geomorphic Assessment Handbook, Appendix Q, 2004, VT Agency of Natural Resources, Waterbury, VT. <u>http://www.vtwaterquality.org/rivers/docs/assessmenthandbooks/rv_apxqglossary.pdf</u>

Adjustment process – type of change that is underway due to natural causes or human activity that has or will result in a change to the valley, floodplain, and/or channel condition (e.g., vertical, lateral, or channel plan form adjustment processes).

Aggradation - A progressive buildup or raising of the channel bed and floodplain due to sediment deposition. The geologic process by which streambeds are raised in elevation and floodplains are formed. Aggradation indicates that the stream discharge and/or bed load characteristics are changing. Opposite of degradation.

Alluvial fan – A fan-shaped accumulation of alluvium (alluvial soils) deposited at the mouth of a ravine or at the juncture of a tributary stream with the main stem where there is an abrupt change in slope.

Alluvial soils – Soil deposits from rivers.

Alluvium – A general term for detrital deposits made by streams on riverbeds, floodplains, and alluvial fans.

Avulsion – A change in channel course that occurs when a stream suddenly breaks through its banks, typically bisecting an overextended meander arc.

Bank Stability – The ability of a streambank to counteract erosion or gravity forces.

Bankfull channel depth - The maximum depth of a channel within a riffle segment when flowing at a bankfull discharge.

Bankfull channel width - The top surface width of a stream channel when flowing at a bankfull discharge.

Bankfull discharge - The stream discharge corresponding to the water stage that overtops the natural banks. This flow occurs, on average, about once every 1 to 2 years and given its frequency and magnitude is responsible for the shaping of most stream or river channels.

Bar – An accumulation of alluvium (usually gravel or sand) caused by a decrease in sediment transport capacity on the inside of meander bends or in the center of an overwide channel.

Berms – Mounds of dirt, earth, gravel or other fill built parallel to the stream banks designed to keep flood flows from entering the adjacent floodplain.

Cascade – River bed form where the channel is very steep with narrow confinement. There are often large boulders and bedrock with waterfalls.

Channelization – The process of changing (usually straightening) the natural path of a waterway.

Culvert – A buried pipe that allows flows to pass under a road.

Degradation – (1) A progressive lowering of the channel bed due to scour. Degradation is an indicator that the stream's discharge and/or sediment load is changing. The opposite of aggradation. (2) A decrease in value for a designated use.

Delta bar - A deposit of sediment where a tributary enters the mainstem of a river.

Depositional features – Types of sediment deposition and storage areas in a channel (e.g. mid-channel bars, point bars, side bars, diagonal bars, delta bars, and islands).

Drainage Basin – The total area of land from which water drains into a specific river.

Dredging – Removing material (usually sediments) from wetlands or waterways, usually to make them deeper or wider.

Erosion – Wearing away of rock or soil by the gradual detachment of soil or rock fragments by water, wind, ice, and other mechanical, chemical, or biological forces.

Floodplain – Land built of sediment that is regularly covered with water as a result of the flooding of a nearby stream.

Gaging Station - A particular site in a stream, lake, reservoir, etc., where hydrologic data are obtained.

Grade control - A fixed feature on the streambed that controls the bed elevation at that point, effectively fixing the bed elevation from potential incision; typically bedrock, dams or culverts.

Gradient - Vertical drop per unit of horizontal distance.

Habitat – The local environment in which organisms normally grow and live.

Headwater – Referring to the source of a stream or river.

Incised River – A river that erodes its channel by the process of degradation to a lower base level than existed previously or is consistent with the current hydrology.

Islands – Mid-channel bars that are above the average water level and have established woody vegetation.

Lacustrine soils- Soil deposits from lakes.

Meander - The winding of a stream channel, usually in an erodible alluvial valley. A series of sine-generated curves characterized by curved flow and alternating banks and shoals.

Meander migration – The change of course or movement of a channel. The movement of a channel over time is natural in most alluvial systems. The rate of movement may be increased if the stream is out of balance with its watershed inputs.

Meander belt width – The horizontal distance between the opposite outside banks of fully developed meanders determined by extending two lines (one on each side of the channel) parallel to the valley from the lateral extent of each meander bend along both sides of the channel.

Meander wavelength - The lineal distance downvalley between two corresponding points of successive meanders of the same phase.

Meander wavelength ratio - The meander wavelength divided by the bankfull channel width.

Meander width ratio – The meander belt width divided by the bankfull channel width.

Mid-channel bar – Sediment deposits (bar) located in the channel away from the banks, generally found in areas where the channel runs straight. Mid-channel bars caused by recent channel instability are unvegetated.

Planform - The channel shape as if observed from the air. Changes in planform often involve shifts in large amount of sediment, bank erosion, or the migration of the channel.

Plane bed – Channel lacks discrete bed features (such as pools, riffles, and point bars) and may have long stretches of featureless bed.

Point bar – The convex side of a meander bend that is built up due to sediment deposition.

Pool -- A habitat feature (section of stream) that is characterized by deep, low-velocity water and a smooth surface.

Reach - Section of river with similar characteristics such as slope, confinement (valley width), and tributary influence.

Restoration - The return of an ecosystem to a close approximation of its condition prior to disturbance.

Riffle - A habitat feature (section of stream) that is characterized by shallow, fast-moving water broken by the presence of rocks and boulders.

Riffle-pool - Channel has undulating bed that defines a sequence of riffles, runs, pools, and point bars. Occurs in moderate to low gradient and moderately sinuous channels, generally in unconfined valleys with well-established floodplains.

Riparian Buffer – The width of naturally vegetated land adjacent to the stream between the top of the bank and the edge of other land uses. A buffer is largely undisturbed and consists of the trees, shrubs, groundcover plants, duff layer, and naturally uneven ground surface.

Riparian Corridor – Lands defined by the lateral extent of a stream's meanders necessary to maintain a stable stream dimension, pattern, profile and sediment regime.

Segment – A relatively homogeneous section of stream contained within a reach that has the same reference stream characteristics but is distinct from other segments in the reach.

Sensitivity – The valley, floodplain and/or channel condition's likelihood to change due to natural causes and/or anticipated human activity.

Side bar – Unvegetated sediment deposits located along the margins or the channel in locations other than the inside of channel meander bends.

Step-pool – Characterized by longitudinal steps formed by large particles (boulder/cobbles) organized into discrete channel-spanning accumulations that separate pools, which contain smaller sized materials. Often associated with steep channels in confined valleys.

Surficial sediment/geology – Sediment that lies on top of bedrock.

Tributary – A stream that flows into another stream, river, or lake.

Urban runoff – Storm water from city streets and gutters that usually carries a great deal of litter and organic and bacterial wastes into the receiving waters.

9.0 **REFERENCES**

- Bear Creek Environmental, LLC (BCE), Friends of the Winooski River, and Central Vermont Regional Planning Commission. October 2008. Kingsbury Branch of the Winooski River Watershed River Corridor Plan. Middlesex, Vermont.
- Foreman, R.T.T. and L.E. Alexander. 1998. Roads and Their Ecological Effects: Annual. Review of Ecological Systematics. Vol. 29: 207-231.
- Leopold, L.B. 1994. A View of the River. Cambridge, Massachusetts.
- Milone & MacBroom, Inc. 2008a. The Vermont Culvert Geomorphic Capability Screening Tool. South Burlington, Vermont.
- Milone & MacBroom, Inc. 2008b. The Vermont Culvert Aquatic Organism Passage Screening Tool, South Burlington, Vermont.
- Montgomery, David and Buffington, John. 1997. Channel Reach Morphology in Mountain Basins. GSA Bulletin. Boulder, Colorado.
- Rosgen, Dave. 1996. Applied River Morphology. Pagosa Springs, Colorado.
- United States Department of Agriculture. 1986. Urban Hydrology for Small Watersheds. Soil Conservation Service, Engineering Division, Technical Release 55. Washington, D.C.
- Vermont Agency of Natural Resources. 2007a. Vermont Agency of Natural Resources River Corridor Planning Guide to Identify and Develop River Corridor Protection and Restoration Projects. (Partially Drafted July 2007). Vermont Agency of Natural Resources, Department of Environmental Conservation, River Management Program, Waterbury, Vermont.
- Vermont Agency of Natural Resources. 2007b. Vermont Agency of Natural Resources Phase 2 Handbook, Rapid Stream Assessment Field Protocols. Vermont Agency of Natural Resources, Department of Environmental Conservation, River Management Program, Waterbury, Vermont.
- Vermont Agency of Natural Resources. 2008. River Corridor Protection Guide: Fluvial Geomorphic-Based Methodology to Reduce Flood Hazards and Protect Water Quality. DEC River Management Program. Waterbury, Vermont.

APPENDIX A STANDARD PHASE 2 DMS REPORTS

Stream:	oury Branch Pekin Brook				ach # T	3.07	2 Segment Sumr	Segme	ent: 0	Completion [Date: Septer	AT Version: 4.56 mber 29, 2009
Organization: Be Segment Length (ft)	ear Creek Er	1,489		gment Loc	rvers: P		begins just upstream	•		no property ac		Rain: No os until iust
	,	•		•					-			
QC Status - Staff: I				nd. Floodpln	o 2. (Cont	0.00 ft.		arian Features		4.1 Springs / S	Flow & Flow	Modifiers
Step 1. Valley 1.1 Segmentation				Elev Floodp		0.00 ft.	3.1 Stream Banks Typical Bank Slope			4.2 Adjacent W	-	
1.2 Alluvial Fan	None			h/Depth Rat		0.00 m.	Bank Texture	Left	Right	4.3 Flow Status		
1.3 Corridor Encroach				enchment R		0.00	Upper		<u>r tigitt</u>	4.4 # of Debris		0
		Dath		ion Ratio	allo	0.00	Material Type			4.5 Flow Regul		None
Length (ft)	One	Both		Elevated Inc	Rat	0.00	Consistency			Flow Regulat		
Berms	0	0	2.9 Sinu		, nut	0.00	Lower			Impoundmen		
height Roads	0 720	0		les Type			Material Type			Impoundmt. I		
	729	0		le/Step Spa	cing (ft)	0	Consistency			4.6 Up/Down s		None
height Railroads	0 0	0		ostrate Com		U	Bank Erosion	Left	Right	, (old) Upstrm	-	
height	0	0	2.12 500		position		Erosion Length (ft)	0	<u></u>	()	0	
Improved Paths	0	0					Erosion Height (ft)	0.00	0.00			
height	0	0					Revetmt. Type	Rip-Rap	Rip-Rap			
Development	114	0					Revetmt. Length (ft)	182	38			
1.4 Adjacent Side	Left	Right					Near Bank Veg. Type	Left	Right		-	0
Hillside Slope		<u></u>					Dominant			4.9 # of Beave		0
Continuous w/							Sub-dominant			Affected Lo	8 ()	-
W/in 1 Bankfill							Bank Canopy	Left	Right		iel Bed and P	Planform Changes
Texture			Silt/Clay	Present?			Canopy %			5.1 Bar Types		
			Detritus		0 %		Mid-Channel Canopy			Mid	Point	Side
1.5 Valley Features	••••••		# Large	Woodv	0		3.2 Riparian Buffer			0	0	0
Valley Width (f				erage Larges	st Particle	on	Buffer Width	Left	Right	Diagonal	Delta	Island
Width Determinatio			Bed	0.0		<u> </u>	Dominant			0	0	0
Confinement Typ			Bar	0.0			Sub-dominant			5.2 Other Feat	ures	∖ <u>Braiding</u>
Rock Gorge			Dai	0.0			W less than 25	138	0	Flood Neck C		$\underline{\mathbf{on}} \setminus 0$
Human-caused Chan	-		2 1/1 Str	eam Type			Buffer Veg. Type	Left	Right	0 0	0	N N
Step 2. Stream	Channel			eam Type:	в		Dominant			5.3 Steep Riffle		Suts
2.1 Bankfull Width	0)		d Material:			Sub-dominant			Steep Riffles	Head Cuts	Trib Rejuv.
2.2 Max Depth (ft)	0.00			ass Slope:			3.3 Riparian Corridor			0	0	
2.3 Mean Depth (ft)	0.00)		Bed Form:		ol I	Corridor Land	Left	Right	5.4 Stream Fo		No
2.4 Floodprone Width	h (ft) 0			leasured Slo	-		Dominant			5.5 Straighteni	-	Straightening
Notes:				ference Stre			Sub-dominant			Straighteni	ng Length:	346
				ferent from	<u> </u>		Mass Failures	0	23	5.5 Dredging		None
					,		Height	0	20	Neter Of the		
			3.3 old	Amount	Mean H	leight	Gullies	0		Note: Step 1.6 and Step 4.8 -		
			Failures	One		20.00	Length	0		are on The sec		
			Gullies	None		0.00	Height	0.00)	report - with S		
						3.30	-			•		

Project: Stream: Organizatio Segment Le		ok		Reach # Observers: Location:	PD	-	page 2 of 2 Segment: 0 Im from the crossing of Ken	Completion Date: Rain: It Hill Road and co	No
1.6 Gra	de Controls						Step 7. Rapid Geomor	phic Assessment Da	ta
Туре	Location	Total	Total Height Above Water	Photo Ta	^{ike –} GPSTaken		Confinement Type		
Ledge	Mid-segment	0.00	0.00	Yes					
							Channel Evolution Model Channel Evolution Stage Geomorphic Condition Stream Sensitivity	Fair	
							Step 6. Rapid Habitat Asses	sment Data	
4.8 Char	nnel Constrictions						Stream Gradient Type		
Туре				oodprone onstriction?	,				
Narrative	2:						Habitat Stream Condition		

	bury Branc Pekin Broo			Rea	Pha ach # T3.0	ase 08	2 Segment Summ	ary page 1 Segme				AT Version: 4.56 mber 29, 2009
Organization: Be	ear Creek E	Environmer	ntal	Observ	vers: PD			Why Not	assessed:	no property a	-	Rain: No
Segment Length (ft)	:):	4,599	Seg	gment Loca	ation: Rea	ach∣	begins just upstream	of North Cal	ais Road o	crossing and o	onitnues un	til confluence
QC Status - Staff: I	Provisional	Cons	Passed	Step	2. (Contue	d)	Step 3. Ripar	rian Features		Step 4	. Flow & Flow	Modifiers
Step 1. Valley	and Flood	plain	2.5 Aban	d. Floodpln	0.0	00 ft.	3.1 Stream Banks			4.1 Springs / S		
1.1 Segmentation		<u> </u>	Human E	Elev Floodplr	n 0.0)0 ft.	Typical Bank Slope			4.2 Adjacent V	Vetlands	
1.2 Alluvial Fan	None		2.6 Width	/Depth Ratio	o 0 .	.00	Bank Texture	Left	Right	4.3 Flow Statu	IS	
1.3 Corridor Encroach	nments		2.7 Entre	nchment Ra	tio 0 .	.00	Upper			4.4 # of Debris		0
Length (ft)	One	Both	2.8 Incisi	on Ratio	0	.00	Material Type			4.5 Flow Regu		None
Berms	0	0	Human E	levated Inc I	Rat 0 .	.00	Consistency			Flow Regula		
height	0	0	2.9 Sinuc	osity			Lower			Impoundme		
Roads	2,693	0	2.10 Riffle	es Type			Material Type			Impoundmt.		
height	0	0	2.11 Riffle	e/Step Spac	ing (ft)	0	Consistency			4.6 Up/Down	•	None
Railroads	0	0	2.12 Sub	strate Comp	osition		Bank Erosion	Left	Right	(old) Upstrm	Flow Reg	
height	0	0					Erosion Length (ft)	0	0			
Improved Paths	0	0					Erosion Height (ft)	0.00	0.00			
height	0	0					Revetmt. Type	None	Rip-Rap			
Development	0	0					Revetmt. Length (ft)	0	81			
1.4 Adjacent Side	Left	Right					Near Bank Veg. Type	Left	Right	4.9 # of Beav	er Dams	0
Hillside Slope							Dominant			Affected L	.ength (ft)	0
Continuous w/							Sub-dominant	1 - 64	Dialet	Step 5. Chan	nel Bed and P	lanform Changes
W/in 1 Bankfill				-			Bank Canopy	Left	Right	5.1 Bar Types	j	
Texture			Silt/Clay	Present?			Canopy %			Mid	Point	Side
1.5 Valley Features			Detritus		0 %		Mid-Channel Canopy			0	0	0
Valley Width (f	ft) O		# Large V	-	0		3.2 Riparian Buffer Buffer Width	Left	Pight	Diagonal	Delta	Island
Width Determinatio	n		2.13 Ave	rage Largest	t Particle or	<u>1</u>	Dominant	Leit	Right	0	0	0
Confinement Typ	e		Bed	0.0			Sub-dominant			5.2 Other Fea	tures	\ Braiding
Rock Gorge	?		Bar	0.0			W less than 25	0	148	Flood Neck		\
Human-caused Chan	ige?						Buffer Veg. Type	Left	Right	$\frac{1}{0}$ $\frac{1}{0}$		<u> </u>
Step 2. Stream	Channel		2.14 Stre		-		Dominant			5.3 Steep Riff	les and Head C	Cuts
2.1 Bankfull Width		0		eam Type: I			Sub-dominant			Steep Riffles	Head Cuts	Trib Rejuv.
2.2 Max Depth (ft)	0.0	00		d Material:			3.3 Riparian Corridor			0	0	<u> </u>
2.3 Mean Depth (ft)	0.0	00		ass Slope: I Bed Form: I		ما	Corridor Land	Left	Right	5.4 Stream Fo	ord or Animal	No
2.4 Floodprone Width	h (ft)	0		easured Slop		10	Dominant			5.5 Straighter	ing	Straightening
Notes:				erence Strea			Sub-dominant			Straighter	ing Length:	495
				erent from F			Mass Failures	0	0	5.5 Dredging		None
					1036 1)		Height	0	0			
			2224	Amount	Moon Us	aht	Gullies	0	-		6 - Grade Cont	
			<u>3.3 old</u> Failures	Amount None	Mean Hei	.00	Length	0			Channel Cons	
							Height	0.00			Steps 6 through	
			Gullies	None	0.	00		0.00				

Project:	Kingsbury Brar	nch			Phase 2 Reach Summa	ry page 2 of 2	April 26, 2010
Stream:	Pekin Bro			Reach #		Segment: 0	Completion Date: September 29,
Organizatio		Environment		Observers:			Rain: No
Segment L	ength (ft):	4,599	Segme	nt Location:	Reach begins just upst	ream of North Calais Road cro	ossing and conitnues until
1.6 Gra	ade Controls					Step 7. Rapid Geomo	rphic Assessment Data
Туре	Location		Total Height Above Wate	^t Photo Ta r	^{k∉™} GPSTaken	Confinement Type	
						Channel Evolution Model	
						Channel Evolution Stage	
						Geomorphic Condition	Good
						Stream Sensitivity	
						Step 6. Rapid Habitat Asses	ssment Data
						Stream Gradient Type	
4.8 Cha	nnel Constrictions					Stream Gradient Type	
Туре	Photo Width Taken?			Floodprone			
туре	Width Taken?	Taken? Con	striction? (Constriction?			
						Habitat Stream Conditior	
Narrative	e:					Habitat Stream Condition	I

Project: King Stream:	sbury Brand Pekin Brod			Rea	Ach # T	hase 3.09	2 Segment Sumr	nary ^{page 1} Segme		April 26, Completion Dat		AT Version: 4.56 mber 29, 2009
Organization:	Bear Creek	Environmer	tal	Obser	rvers: P	D		Why Not	assessed:	no property acce	SS	Rain: Yes
Segment Length	(ft):	3,725	Se	gment Loca	ation: R	each	begins at confluence	e with Dugar I	Brook and	continues to just	above th	ne culvert
QC Status - Staf	f: Provisional	Cons	Passed	Step	o 2. (Conti	ued)	Step 3. Rip	arian Features	i	Step 4. Fl	ow & Flow	/ Modifiers
Step 1. Valle	ey and Flood	dplain	2.5 Abar	nd. Floodpln		0.00 ft.	3.1 Stream Banks		•	4.1 Springs / See	ps	
1.1 Segmentation			Human	Elev Floodpl	In (0.00 ft.	Typical Bank Slope			4.2 Adjacent Wetl	ands	
1.2 Alluvial Fan	None		2.6 Widt	h/Depth Rati	io	0.00	Bank Texture	Left	Right	4.3 Flow Status		
1.3 Corridor Encroa	achments		2.7 Entre	enchment Ra	atio	0.00	Upper			4.4 # of Debris Ja		0
Length (ft)) One	Both	2.8 Incis	ion Ratio		0.00	Material Type			4.5 Flow Regulation	on Type	Small Run of
Berms		0	Human	Elevated Inc	Rat	0.00	Consistency			Flow Regulation	Use	Hydro-electric
height	t O	0	2.9 Sinu	osity			Lower			Impoundments		
Roads		0	2.10 Riff	iles Type			Material Type			Impoundmt. Loc	ation	
height	t O	0	2.11 Riff	ile/Step Spac	cing (ft)	0	Consistency			4.6 Up/Down strm	-	None
Railroads		0	2.12 Sul	ostrate Comp	position		Bank Erosion	Left	Right	(old) Upstrm Flo	w Reg	
height	t O	0					Erosion Length (ft)	0	0			
Improved Paths	s 0	0					Erosion Height (ft)	0.00	0.00			
height	t O	0					Revetmt. Type	Rip-Rap	Rip-Rap			
Development	t O	86					Revetmt. Length (ft)	67	76			
1.4 Adjacent Side	Left	Right					Near Bank Veg. Type	Left	Right	4.9 # of Beaver D	Jams	0
Hillside Slope	e						Dominant			Affected Leng		0
Continuous w/	/						Sub-dominant					Planform Changes
W/in 1 Bankfill	I						Bank Canopy	Left	Right	5.1 Bar Types		lamorn onanges
Texture	9		Silt/Clay	Present?			Canopy %				Point	Sido
1.5 Valley Features			Detritus		0 %		Mid-Channel Canopy					Side
Valley Width	_		# Large	Woody	0		3.2 Riparian Buffer			0	0	0
Width Determina	. ,		2.13 Ave	erage Larges	st Particle	on	Buffer Width	Left	Right		Delta	Island
Confinement T			Bed	0.0			Dominant			0	0	0
Rock Gor			Bar	0.0			Sub-dominant			5.2 Other Feature		Braiding
Human-caused Ch	•						W less than 25	154	1,430	Flood Neck Cuto	off <u>Avulsic</u>	<u>on</u> \ 0
Step 2. Strea	-		2.14 Str	eam Type			Buffer Veg. Type	Left	Right	• •	Ŭ	0
2.1 Bankfull Width		0		eam Type:	С		Dominant			5.3 Steep Riffles		
		-	Be	d Material:	Gravel		Sub-dominant			Steep Riffles H	ead Cuts	Trib Rejuv.
2.2 Max Depth (ft)		.00		lass Slope:			3.3 Riparian Corridor		_	U 5 4 Stream Ford	U or Animal	Ne
2.3 Mean Depth (fl	,	.00		Bed Form:	Riffle-Po	ol	Corridor Land	Left	Right	5.4 Stream Ford of 5.5 Straightening		No Straightoning
2.4 Floodprone Wi	idtn (ft)	0	Field N	leasured Slo	ppe:		Dominant					Straightening 281
Notes:			2.15 Re	ference Stre	am Type		Sub-dominant			Straightening 5.5 Dredging	Length.	None
			(if di	fferent from I	Phase 1)		Mass Failures	0	0	5.5 Dredying		NONE
							Height	0	0	Note: Step 1.6 - 0	Grade Con	trols
			3.3 old	Amount	Mean H	leight	Gullies	0	1	and Step 4.8 - Ch		
			Failures	None		0.00	Length	0	1	are on The secon		
			Gullies	None		0.00	Height	0.00		report - with Step	s 6 through	n 7.

Project: Stream: Organizatio Segment Le		ok		Reach # Observers: t Location:	PD	page 2 of 2 Segment: 0 ce with Dugar Brook and co	Completion Date: Rain: Patinues to just ab	Yes
1.6 Grad Type Waterfall	de Controls Location Mid-segment	Total 0.00	Total Height Above Water 0.00	Photo Ta No	^{ke –} GPSTaken	Step 7. Rapid Geomo Confinement Type	rphic Assessment Da	ta
						 Channel Evolution Model Channel Evolution Stage Geomorphic Condition Stream Sensitivity	Fair	
4.8 Chan	nnel Constrictions Photo	GPS (Channel Fl	oodprone		Step 6. Rapid Habitat Asses Stream Gradient Type	sment Data	
Туре	Width Taken?	Taken? (Constriction? Co	onstriction?				
Narrative	::					Habitat Stream Condition	I	

Project: Kir Stream: Organization:	ngsbury E Pekin Boar Cr	Broo		ital		Phase each # T3.10 rvers: PD, DC	e 2 Segment S	Se	age 1 of 2 gment: A 7 Not assessed:	•		AT Version: 4.56 ember 2, 2009 Rain: No
Segment Lengt		CCK L	2,323			-	eam from the int	•		Road and Nort	h Calais Ro	
	. ,				•	•	1		1			
QC Status - Sta				Passed	nd. Floodpln	p 2. (Contued) 2.65 ft		3. Riparian Feat	ures	4.1 Springs / S	Flow & Flov	<u>v Modifiers</u> Abundant
Step 1. Va 1.1 Segmentation	-		-		-		0.1 Otteam Ban			4.1 Springs / 3 4.2 Adjacent W	-	Abundant
1.2 Alluvial Fan	None		ners		Elev Floodp h/Depth Rat		Bank Texture	Left	Right	4.3 Flow Status		Moderate
					enchment R		Upper		rugin	4.4 # of Debris		1
1.3 Corridor Encr		-		-	sion Ratio	allo 6.52 1.43	Material Type	Sand	Sand	4.5 Flow Regul		None
Length (One	Both		Elevated Inc		Consistency	Non-cohesive	Non-cohesive	Flow Regulat		None
Bern	-	0	0	2.9 Sinu		Moderate	Lower	Non-conesive	Non-conesive	Impoundmen		
heig		0	0		5		Material Type	Sand	Sand	Impoundmt. I		
Road		752	0		fles Type	Complete	Consistency	Non-cohesive	Non-cohesive	4.6 Up/Down s		None
heig		0	0		fle/Step Spa		Bank Erosion	Left	Right	(old) Upstrm	•	None
Railroa		0	0		bstrate Com	·	Erosion Length		27		now reg	
heig		0	0	Bedroc		0%	Erosion Height	()	2.49			
Improved Pati		0	0	Boulde		1%	Revetmt. Type		Rip-Rap			
heig		0	0	Cobble		7%	Revetmt. Leng		70			
Developme		57	0	Coarse	e Gravel	52 %	-		-			
1.4 Adjacent Side	_	Left	Right	Fine G	ravel	24 %	Near Bank Veg. Dominant	Type Left Herbaceous	Right Herbaceous	4.9 # of Beave	er Dams	0
Hillside Slo		lilly	Hilly	Sand		16 %				Affected Le	ength (ft)	0
Continuous	w/ Ne	ever	Never	Silt and	d smaller	0%	Sub-dominant Bank Canopy	Shrubs/Saplin		Step 5. Chanr	nel Bed and I	Planform Changes
W/in 1 Bank		ever	Never	0.11/101	D (0)		Canopy %	Left 51-75	<u>Right</u> 51-75	5.1 Bar Types		
Textu	re Not Ev	alua	Not Evalua	-	Present?	Yes				Mid	Point	Side
1.5 Valley Featur	es			Detritus		0 %	Mid-Channel C		Open	1	0	4
Valley Wid	dth (ft) 4	80		# Large	-	0	3.2 Riparian But		Dight	Diagonal	Delta	Island
Width Determi	nation M	leasur	red	2.13 Ave	erage Large	st Particle on	Buffer Width Dominant	<u>Left</u> 0-25	<u>Right</u> 51-100	1	0	0
Confinement	Type V	ery Br	road	Bed	6.9	inches	Sub-dominant	>100	0-25	5.2 Other Feat	•	∖ Braiding
Rock G	••	-		Bar	2.3	inches	W less than 25		252	Flood Neck C		\ <u> </u>
Human-caused (•	No					Buffer Veg. Typ		Right		<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	
Step 2. Str	•			2.14 Str	eam Type		Dominant	Herbaceous	Herbaceous	5.3 Steep Riffle	es and Head	Cuts
2.1 Bankfull Wid			26	Str	ream Type:	С					Head Cuts	Trib Rejuv.
2.2 Max Depth (1.8		Be	ed Material:	Gravel		Shrubs/Saplin	Shrubs/Sapiin	1	0	No
2.3 Mean Depth	-	1.1			lass Slope:		3.3 Riparian Co		Dist	5.4 Stream For	-	No
2.4 Floodprone	· /	21				Riffle-Pool	Corridor Land	Left	Right	5.5 Straighteni		Straightening
· · · ·		21			leasured Slo	•	Dominant	Нау	Нау	Straighteni	•	1,387
Notes:		(h	a ta data		ference Stre		Sub-dominant	Shrubs/Saplin	Residential	5.5 Dredging	ng Longui.	None
There is a signific reach due to move				(if di	fferent from	Phase 1)	Mass Failures	0	0	5.0 <u>-</u> .009mg		
the edge of the b							Height	0	0	Note: Step 1.6	- Grade Con	trols
lower end of the				3.3 old	Amount	Mean Height	Gullies		0	and Step 4.8 -		
sediment buildup			-	Failures	None	0.00	Length		0	are on The sec		
rock dam at the o	downstream	n reac	h break.	Gullies	None	0.00	Height		0.00	report - with S	teps 6 throug	h 7.

Project: Stream: Organization Segment I	Kingsbury Brand Pekin Brod on: Bear Creek _ength (ft):	ok			PD, DC, AA	-	page 2 of 2 Segment: A ection of Moscow V	Noods R		Rain:	
	ade Controls	2/020	Segmen		opsticulinito				rphic Assessn		
110 610			Total Height	Photo Ta	ke		Confinement Type	Uncon	•		
Туре	Location	Total	Above Water		^{k∉™} GPSTaken		commence rype	•	Score	STD	Historic
Dam	Mid-segment	8.00	8.00	Yes		7 1 Channe	el Degradation		9	None	Yes
Ledge	Mid-segment	1.00	1.00	Yes			el Aggradation		11	None	No
5	inid beginerit						ng Channel		17		No
							e in Planform		10		Νο
								al Score	47		
							Geomorphi	c Rating	0.5875		
							Channel Evolutio	n Model	F		
							Channel Evolutio		IV		
							Geomorphic C	-	Fair		
							Stream Se		Very High		
									,		
							Step 6. Rapid Hab	oitat Asse	ssment Data		
4.8 Cha	nnel Constrictions						Stream Gradient Ty	vpe I	High		
	Photo	GPS CI	hannel Fl	oodprone					S	core	
Туре	Width Taken?			onstriction?		6.1 Epifaunal	Substrate - Available	e Cover		8	
Bridge	13.5 Yes	Yes	No	No			6.2 Embedd	ledness		11	
	Problem None						6.3 Velocity/Depth P			13	
Bridge	4.40 Yes	Yes	Yes	No			6.4 Sediment Dep			18	
	Problem Deposition						6.5 Channel Flow			17	
Other	8.00 Yes Problem Deposition	No No Sc	Yes	Yes			6.6 Channel Alt			8	
Г	Toblem Deposition	ITADUVE, SC	our below			6.	7 Frequency of Riffles	•		18	0
						()	6.8 Bank S	5	Left: 9		
							Bank Vegetation Pro		Left: 6	•	
							arian Vegetation Zone		Left: 2		
								al Score		33 665	
							Habitat	кашу	0.	000	
							Habitat Stream	Condition		Good	
Narrativ	e:							Condition		JUUU	

Major historic channel incision as shown by the abandoned floodplain on left. Channel undergoing some aggradation and planform adjustment. Aggradation is most pronounced just upstream of dam at downstream end of reach. Dam is a fish passage issue.

Project: King Stream:	gsbury Br Pekin E			Re	Phase each # T3.10	2 Segment S		age 1 of 2 gment: B	April 26, Completion Dat		AT Version: 4.56 ember 2, 2009
Organization:	Bear Cre	ek Environme	ntal	Obse	ervers: PD, DC	, AA	Why	Not assessed:			Rain: No
Segment Length	n (ft):	1,652	Se	gment Loc	ation: Segme	nt begins appro	oximately 2,300) feet upstrean	n of the dam just	upstream	of Moscow
QC Status - Sta	ff: Provisio	onal Cons	Passed	Ste	p 2. (Contued)	Step	3. Riparian Feat	ures	Step 4. Fl	ow & Flow	v Modifiers
Step 1. Val	ley and Fl	oodplain	2.5 Abar	nd. Floodpln	3.25 ft.	3.1 Stream Bank		<u></u>	4.1 Springs / See		Abundant
1.1 Segmentation			Human	Elev Floodp	oln 0.00 ft.	Typical Bank S			4.2 Adjacent Wetl	ands	Abundant
1.2 Alluvial Fan	None		2.6 Widt	h/Depth Ra	tio 14.75	Bank Texture	Left	Right	4.3 Flow Status		Moderate
1.3 Corridor Encro	achments		2.7 Entre	enchment R	atio 3.71	Upper			4.4 # of Debris Ja	ms	1
Length (ft	t) Or	ne Both	2.8 Incis	ion Ratio	1.51	Material Type	Sand	Sand	4.5 Flow Regulation	on Type	None
Berm	÷ —	0 0	Human I	Elevated Inc	c Rat 0.00	Consistency	Non-cohesive	Non-cohesive	Ũ	Use	
heigh	nt	0 0	2.9 Sinu	losity	Moderate	Lower			Impoundments		
Road		19 0	2.10 Riff	fles Type	Complete	Material Type	Gravel	Gravel	Impoundmt. Loc		
heigh	nt	0 0	2.11 Riff	fle/Step Spa	icing (ft) 62	Consistency	Non-cohesive	Non-cohesive	•	•	None
Railroad	S	0 0	2.12 Sub	bstrate Com	position	Bank Erosion	Left	Right	(old) Upstrm Flo	w Reg	
heigh	nt	0 0	Bedroc	k	0%	Erosion Length		40	4.7 StormwaterInp	uts	
Improved Paths	s	0 0	Boulde	r	4%	Erosion Height		4.00	Field Ditch 0	Road	Ditch 1
heigh	nt	0 0	Cobble)	32%	Revetmt. Type	Multiple	Rip-Rap	Other 0	Tile Di	rain 0
Developmen	nt 2 1	0 0	Coarse	e Gravel	42%	Revetmt. Lengt	. ,	129	Overland Flow 0	Urb St	trm Wtr Pipe 0
1.4 Adjacent Side	Le	eft Right	Fine G	ravel	16%	Near Bank Veg.		Right	4.9 # of Beaver D	Jams	0
Hillside Slop	e Very Stee	ep Extremely	Sand		6%	Dominant	Deciduous	Deciduous	Affected Leng		0
Continuous w	v/ Nev	er Sometimes		d smaller	0%		Shrubs/Saplin	-	Step 5. Channel	, , ,	Planform Change
W/in 1 Bankfi	ill Sometime	es Sometimes			0 /0	Bank Canopy	Left	Right	5.1 Bar Types		<u></u>
Textur	e Not Eval	ua Sand	Silt/Clay	Present?	No	Canopy %	76-100	51-75		Point	Side
1.5 Valley Feature	s		Detritus		0 %	Mid-Channel C	1,2	losed	8	0	1
Valley Widt	 :h (ft) 330)	# Large	Woody	39	3.2 Riparian Buf			-	Delta	Island
Width Determina	. ,	imated	2.13 Ave	erage Large	st Particle on	Buffer Width	Left	Right	0	0	<u>15ianu</u> 1
Confinement	Type Ver	y Broad	Bed	12.4	inches	Dominant	>100	26-50	•	•	•
Rock Go		-	Bar	3.3	inches	Sub-dominant	None	0-25	5.2 Other Feature	_	on Braiding
Human-caused Cl	•					W less than 25	-	304	Flood Neck Cuto	off <u>Avulsic</u>	$\frac{n}{n}$
Step 2. Stre	-		2.14 Str	eam Type		Buffer Veg. Typ		Right	5.3 Steep Riffles	Ŭ	Cute
2.1 Bankfull Width		<u>21</u>	Str	ream Type:	С	Dominant	Mixed Trees	Mixed Trees	·	ead Cuts	
2.2 Max Depth (ft		2.15	Be	ed Material:	Gravel		Shrubs/Saplin	Shrubs/Sapiin		0	<u>Trib Rejuv.</u> No
2.3 Mean Depth (1.39		lass Slope:		3.3 Riparian Cor		D : 17	5.4 Stream Ford of	-	No
2.4 Floodprone W		76			Step-Pool	Corridor Land	Left	Right	5.5 Straightening		Straightening
·		10		leasured Slo		Dominant		Shrubs/Saplin	Straightening	Lenath.	1,209
Notes:				ference Stre		Sub-dominant	None	Residential	5.5 Dredging		None
Segment is much downstream with r				fferent from	,	Mass Failures	0	43	5.0 2.009.19		
controls. Encroach			C 4	, b	Step-Pool	Height	0	10	Note: Step 1.6 - 0	Grade Con	trols
impacted this seg		•	3.3 old	Amount	Mean Height	Gullies		0	and Step 4.8 - Ch		
observed along ba		0	Failures	One	10.00	Length		0	are on The secon		
			Gullies	None	0.00	Height		0.00	report - with Step	s 6 through	ı 7.

Project: Stream: Organizatio	Kingsbury Branc Pekin Broo on: Bear Creek I	ok	ental	Reach # Observers:	Phase 2 Reac T3.10 PD, DC, AA	h Summary	page 2 of 2 Segment: B		Completion	Date: Rain:	April 26, 2010 September 2, No
	5 ()	1,652	Segmer	t Location:	Segment beg	ins approximate	ly 2,300 feet ups	tream o	of the dam j	just up	stream of
1.6 Gra	ade Controls						Step 7. Rapid			ent Dat	ta
Туре	Location	Total	Total Height Above Water	Photo Ta	k€ [™] GPSTaken	Con	finement Type I	Unconfi	i ned Score	STD	Historic
Ledge	Mid-segment	3.00	2.00	Yes		7.1 Channel De	egradation		8	None	Yes
Ledge	Mid-segment	4.00	3.00	Yes		7.2 Channel Ag	-		14	None	Νο
Ledge	Mid-segment	6.00	5.00	Yes		7.3 Widening C			13		No
Ledge	Mid-segment	5.00	4.00	Yes		7.4 Change in I			12		Νο
5	inia coginoni						Total S Geomorphic R		47 0.5875		
							Channel Evolution I Channel Evolution Geomorphic Con Stream Sens	Stage dition	F IV Fair Very High		
							tep 6. Rapid Habita				
4.8 Cha	nnel Constrictions					Str	eam Gradient Type	e H	igh		
Туре				loodprone		6 1 Enifounal Sub	strate - Available C	ovor		core 14	
	rakom			onstriction?			6.2 Embedded			12	
Bridge P	23.5 Yes Problem Deposition	Yes Below	No	No		6.3	Velocity/Depth Patt			18	
Bridge		No	No	No		6	.4 Sediment Depos	sition		12	
	Problem Scour Belo					ť	5.5 Channel Flow St			17	
Bedrock	k 10.0 Yes Problem Scour Beld	Yes	Yes	Yes			6.6 Channel Altera			8	
Г	TUDIEIII SCOULDEIC	JVV				6./ Fre	equency of Riffles/S			16 District	0
						6 0 Dop	6.8 Bank Sta	5	Left: 9		
							k Vegetation Protect Vegetation Zone W		Left: 8 Left: 9	•	
							Total S			44	· T
							Habitat Ra			.72	
Narrativ							Habitat Stream Co	ondition	(Good	

Major historic degradation with RAF seen on left side. Some aggradation as evident by mid-channel bars. Planform change is occuring in reach as well - flood chutes.

Project: Kin Stream:	gsbury Bran Pekin Bro			Rea	Phase ach # T3.11	e 2 Segment S	e anning y	age 1 of 2 gment: 0	April Completion	26, 2010 SG Date: Sept e		
Organization:	Bear Creek	Environmer	Ital	Obser	vers: PD, AA	L Contraction of the second se	Why	Not assessed:			Rain: No	
Segment Length	n (ft):	1,024	Se	gment Loca	ation: Reach	begins about 2	00 feet downst	ream of bridge	on the road t	hat connect	s Upper Roa	ad
QC Status - Sta	ff: Provisiona	al Cons	Passed	Step	2. (Contued)	Step	3. Riparian Feat	ures	Step 4	. Flow & Flov	v Modifiers	
Step 1. Val	ley and Floo	odplain	2.5 Abar	id. Floodpln	2.40 ft				4.1 Springs / S		Abundant	
1.1 Segmentation		-	Human	Elev Floodpl	n 0.00 ft				4.2 Adjacent V	Vetlands	None	
1.2 Alluvial Fan	None		2.6 Widtl	n/Depth Rati	o 21.83	Bank Texture	Left	Right	4.3 Flow Statu	S	Low	
1.3 Corridor Encro	achments		2.7 Entre	enchment Ra	atio 1.61	Upper			4.4 # of Debris		0	
Length (ff	t) One	Both	2.8 Incis	ion Ratio	1.14	Material Type	Sand	Sand	4.5 Flow Regu	lation Type	Small Run	of
Berm	<u> </u>	0	Human E	Elevated Inc	Rat 0.00	Consistency	Non-cohesive	Non-cohesive	Flow Regula	tion Use	Recreation	i –
heigh	nt O	0	2.9 Sinu	osity	Low	Lower			Impoundmer	nts		
Road		303	2.10 Riff	es Type	Complete	Material Type	Boulder/Cobbl	Boulder/Cobbl	Impoundmt.	Location		
heigh	nt O	0	2.11 Riff	e/Step Spac	cing (ft) 88	Consistency	Non-cohesive	Non-cohesive	4.6 Up/Down s	strm flow reg	None	
Railroad		0	2.12 Sub	strate Comp	position	Bank Erosion	Left	Right	(old) Upstrm	Flow Reg		
heigh	nt O	0	Bedroc	k	4%	Erosion Length		11	4.7 Stormwater	Inputs		
Improved Path	s 0	0	Boulder		12%	Erosion Height	(ft) 8.82	4.00	Field Ditch	0 Road	Ditch	1
heigh	nt O	0	Cobble		38%	Revetmt. Type	Multiple	Multiple	Other	0 Tile D	rain	0
Developmen	nt 66	265	Coarse	Gravel	33%	Revetmt. Leng	th (ft) 574	764	Overland Flov	0 Urb S ⁻	trm Wtr Pipe	0
1.4 Adjacent Side	Left	Right	Fine Gr		9%	Near Bank Veg.	··	Right	4.9 # of Beav	er Dams	0	
Hillside Slop	e Extremely	Extremely	Sand		4 %	Dominant	Herbaceous	Herbaceous	Affected L		0	
Continuous v	v/ Never	Never		smaller	• % 0%	Sub-dominant	Shrubs/Saplin	Shrubs/Saplin	Step 5. Chan		Planform Cha	andeg
W/in 1 Bankfi	ill Never	Sometimes		Smaller	• 70	Bank Canopy	Left	Right	5.1 Bar Types			inge
Textur	e Not Evalua	Not Evalua	Silt/Clay	Present?	Yes	Canopy %	76-100	1-25	Mid	Point	Side	
1.5 Valley Feature			Detritus		0 %	Mid-Channel C	anopy	Open	4	0	<u>6</u>	
Valley Widt			# Large	Woody	15	3.2 Riparian But	ffer			-	•	
Width Determin		ured	2.13 Ave	rage Larges	t Particle on	Buffer Width	Left	Right	Diagonal	Delta	Island 1	
Confinement			Bed	9.0	inches	Dominant	0-25	0-25	0	0	•	
Rock Go		4	Bar	4.9	inches	Sub-dominant	26-50	26-50	5.2 Other Fea		Braiding	1
Human-caused C	•					W less than 25	-	329	Flood Neck C	Cutoff Avulsi	<u>on</u> \ 0	
	am Channel		2.14 Stre	eam Type		Buffer Veg. Ty		Right		Ŭ	Custa .	
2.1 Bankfull Widtl		28		eam Type:	В	Dominant	Shrubs/Saplin		5.3 Steep Riffl			
2.1 Bankfull Width 2.2 Max Depth (ft		20 2.10	Be	d Material:	Cobble	Sub-dominant		Shrubs/Saplin	Steep Riffles	Head Cuts	Trib Rejuv	<u>/.</u>
				ass Slope:		3.3 Riparian Co			0 5 4 Stroom Eo	U Indian Animal	No	
2.3 Mean Depth (. ,	1.26		Bed Form:	Step-Pool	Corridor Land	Left	Right	5.4 Stream Fo 5.5 Straighten		No	nina
2.4 Floodprone W	viath (it)	44	Field M	easured Slo	pe:	Dominant	Residential	Residential	•	ing Length:	Straighter 1,024	-
Notes:			2.15 Ref	erence Strea	am Type	Sub-dominant	Shrubs/Saplin	Shrubs/Saplin	5.5 Dredging	nig Lengui.	-	4 None
Reach has been a			(if dif	ferent from F	Phase 1)	Mass Failures	0	0	5.5 Dreuging		IN IN	ione
probably straighte considerable hard						Height	0	0	Note: Step 1.6	S - Grade Con	trols	
banks due to rock	-		3.3 old	Amount	Mean Height	Gullies		0	and Step 4.8 -			
armoring.			Failures	None	0.00	Length		0	are on The sec			
5			Gullies	None	0.00	Height		0.00	report - with S	teps 6 throug	h 7.	

Project: Stream: Organizatio	Kingsbury Brand Pekin Brod on: Bear Creek	ok	nental	Reach # Observers:		ch Summary	page 2 of 2 Segment: 0		Completion	Date: Rain:	April 26, 2010 September 9, No
Segment L	ength (ft):	1,024	Segmen	t Location:	Reach begins	about 200 fee	t downstream of b	ridge o	on the road t	hat co	onnects Upper
1.6 Gra	ade Controls						Step 7. Rapid	Geomor	phic Assessm	ent Da	ta
Туре	Location	Total	Total Height Above Water	Photo Ta	^{k∉™} GPSTaken	Co	onfinement Type	Unconf		OTD	Listeria
Dam	Mid comport	9.00	9.00	Yes					Score	STD	Historic
	Mid-segment					7.1 Channel [•			None	Yes
Ledge	Mid-segment	7.00	6.00	Yes		7.2 Channel A	00			None	No
						7.3 Widening			12		Νο
						7.4 Change ir			8		No
							Total		44		
							Geomorphic F	Rating	0.55		
							Channel Evolution I	Model	F		
							Channel Evolution		II		
							Geomorphic Con	-	 Fair		
							Stream Sens		High		
							Step 6. Rapid Habita				
4.8 Cha	nnel Constrictions					5	Stream Gradient Type	e H	ligh		
-	NA (1.1.1	GPS		oodprone						core	
Туре	Width Taken?	Taken?	Constriction? C	onstriction?		6.1 Epitaunal Su	ubstrate - Available C			8	
Bridge	5.50 Yes	Yes	Yes	Yes			6.2 Embedded			12	
	roblem Deposition		Scour Below			6.	3 Velocity/Depth Patt			13	
Bridge	6.00 Yes	Yes	Yes	Yes			6.4 Sediment Depos			10	
	Problem Alignment		Vee	Vee			6.5 Channel Flow St			14	
Culvert	1.70 Yes Problem Deposition	No Abovo 9	Yes Scour Abovo Sc	Yes			6.6 Channel Altera			1	
Other	2.10 Yes	No	Yes	Yes		6.7 F	Frequency of Riffles/S	•		16	
	Problem Deposition						6.8 Bank Sta	5	Left: 9		
Bedrock	•	No	Yes	Yes			ank Vegetation Prote		Left: 3	•	
	roblem Scour Belo					6.10 Riparia	an Vegetation Zone V		Left: 3		: 1
Culvert		Yes	Yes	Yes			Total S			01	
Р	roblem Scour Abc	ve,Scour	Below,Alignm	ent			Habitat Ra	ating	0.5	505	
Other P Narrative	7.50 Yes Problem Deposition	No n Above,	Yes Scour Below	Yes			Habitat Stream Co	ondition		Fair	

Minor historic incision. Some aggradation and planform change. May have widened. Reach has been straightened 100%. Probably has not incised much due to bedrock in bed. Little erosion due to rock wall armoring on both banks.

Project: King Stream:	sbury Branc Dugar Broc			Re	F ach # T	hase	2 Segment Summ	ary page 1 of Segment:		April 26, 2010 Completion Date: S	SGAT Version: 4.56	
	Bear Creek E		ntal		vers: F			Why Not as		•	Rain: No	
Segment Length		4,663				•	nt begins at confluenc	•)
QC Status - Staff		,	Passed	•	2. (Con						Flow Modifiers	
	ey and Flood			nd. Floodpln		0.00 ft.	Step 3. Ripar 3.1 Stream Banks	Idii Features		4.1 Springs / Seeps	Flow woulders	
1.1 Segmentation	oy and riced			Elev Floodpl		0.00 ft.	Typical Bank Slope			4.2 Adjacent Wetlands		
1.2 Alluvial Fan	None			h/Depth Rati		0.00	Bank Texture	Left	Right	4.3 Flow Status		
1.3 Corridor Encroa	chments			enchment Ra		0.00	Upper			4.4 # of Debris Jams	0	
Length (ft)		Both	2.8 Incis	ion Ratio		0.00	Material Type			4.5 Flow Regulation Ty	pe None	
Berms		0	Human I	Elevated Inc	Rat	0.00	Consistency			Flow Regulation Use		
height	-	0	2.9 Sinu	osity			Lower			Impoundments		
Roads		0	2.10 Riff	les Type			Material Type			Impoundmt. Location		
height	0	0	2.11 Riff	le/Step Spac	cing (ft)	0	Consistency			4.6 Up/Down strm flow		
Railroads	0	0	2.12 Sub	ostrate Comp	position		Bank Erosion	Left	Right	(old) Upstrm Flow Re	g	
height	0	0					Erosion Length (ft)	0	0			
Improved Paths	0	0					Erosion Height (ft)	0.00	0.00			
height		0					Revetmt. Type	None	None			
Development		0					Revetmt. Length (ft)	0	0			
1.4 Adjacent Side	Left	Right					Near Bank Veg. Type	Left	<u>Right</u>	4.9 # of Beaver Dams	3	
Hillside Slope							Dominant			Affected Length (ft)	750	
Continuous w/	1						Sub-dominant	1.54	Dialat	Step 5. Channel Bed a	and Planform Change	jes
W/in 1 Bankfill				-			Bank Canopy	Left	<u>Right</u>	5.1 Bar Types		
Texture	•			Present?			Canopy %			Mid Point	Side	
1.5 Valley Features	<u>5</u>		Detritus		0 %		Mid-Channel Canopy			0 0	0	
Valley Width	n (ft) O		# Large	•		0	3.2 Riparian Buffer Buffer Width	Left	Right	Diagonal Delta	Island	
Width Determination	tion			erage Larges	st Particle	e on	Dominant		<u>rtigin</u>	0 0	0	
Confinement T	уре		Bed	0.0			Sub-dominant			5.2 Other Features	\ Braiding	
Rock Gor	ge?		Bar	0.0			W less than 25	0	0	Flood Neck Cutoff A	vulsion 0	
Human-caused Cha	ange?			_			Buffer Veg. Type	Left	Right	0 0 -	0	
Step 2. Strea				eam Type	F		Dominant			5.3 Steep Riffles and H	ead Cuts	
2.1 Bankfull Width		0		eam Type:			Sub-dominant			Steep Riffles Head C	Cuts Trib Rejuv.	
2.2 Max Depth (ft)	0.0	00		d Material: lass Slope:			3.3 Riparian Corridor			0 0		
2.3 Mean Depth (ft	t) 0. 0	00		Bed Form:		innle	Corridor Land	Left	Right	5.4 Stream Ford or Ani	mal No	
2.4 Floodprone Wi	dth (ft)	0		leasured Slo		ippic	Dominant			5.5 Straightening	None	е
Notes:				ference Strea		,	Sub-dominant			Straightening Lengt		
				fferent from F		-	Mass Failures	0	0	5.5 Dredging	None	e
					1000 1)		Height	0	0			
			3.3 old	Amount	Mean	Height	Gullies	0		Note: Step 1.6 - Grade		
			Failures	None	ivicall	0.00	Length	0		and Step 4.8 - Channel are on The second pag		
			Gullies	None		0.00	Height	0.00		report - with Steps 6 th		
			Juilles	NONE		0.00	5	0.00				

Project:	Kingsbury			.	Phase 2 Reach	n Summary	page 2 of 2	April 26, 2010
Stream:	-	r Brook			T3.08S1.01		Segment: A	Completion Date: September 23,
Organizati	ength (ft):	reek Environr 4,663		Observers:		ne at confluon	co with Dokin Brook and	Rain: No continues until wetland channel is
		4,003	Segin		Segment begi			
1.0 Gra	de Controls		. Total Heig	ht pi i T		C		phic Assessment Data
Туре	Location	Tota	Above Wa	ter	^{ke –} GPSTaken	C.	onfinement Type	
							Channel Evolution Model	
							Channel Evolution Stage	
							Geomorphic Condition	Good
							Stream Sensitivity	
							Step 6. Rapid Habitat Asses	sment Data
4.8 Cha	nnel Constrictio	ons					Stream Gradient Type	
Turne	Pho		Channel	Floodprone				
Туре	Width Tak	en? Taken?	Constriction?	Constriction?				
							Habitat Stream Condition	
Narrativ	5:				I			

Project: Kings Stream:	sbury Bra Dugar B			Re	Pleach # T3	hase 3.08S1	2 Segment S	Parriary	age 1 of 2 gment: B			AT Version: 4.56 mber 23, 2009
Organization:	Bear Cree	ek Environmei	ntal	Obse	ervers: PI	D, AA		Why	Not assessed:			Rain: No
Segment Length ((ft):	900	Se	gment Loc	cation: S	egme	nt begins where	e wetland char	nnel is not influ	enced by beav	ver dams ar	nd continues
QC Status - Staff	: Provisio	nal Cons	Passed	Ste	p 2. (Conti	ued)	Step	3. Riparian Feat	ures	Step 4.	Flow & Flow	v Modifiers
Step 1. Valle	ey and Flo	odplain	2.5 Abar	nd. Floodpln	ן 4	4.30 ft.	3.1 Stream Bank			4.1 Springs / S		Abundant
1.1 Segmentation E	anks and	Buffers	Human	Elev Floodp	oln ().00 ft.	Typical Bank Sl			4.2 Adjacent W	etlands	Abundant
1.2 Alluvial Fan	None		2.6 Widt	h/Depth Rat	tio	9.34	Bank Texture	Left	Right	4.3 Flow Status	3	Moderate
1.3 Corridor Encroad	chments		2.7 Entre	enchment R	atio 3	5.19	Upper			4.4 # of Debris	Jams	0
Length (ft)	On	e Both	2.8 Incis	ion Ratio		1.51	Material Type	Sand	Sand	4.5 Flow Regul	ation Type	None
Berms		0 0	Human	Elevated Inc	c Rat	0.00	Consistency	Non-cohesive	Non-cohesive	Ũ		
height		0 0	2.9 Sinu	losity	Mode	erate	Lower			Impoundmen		
Roads	10	2 0	2.10 Riff	fles Type	Sedimen	ted	Material Type	Silt	Silt	Impoundmt. L		
height		0 0	2.11 Riff	fle/Step Spa	acing (ft)	67	Consistency	Cohesive	Cohesive	1	-	None
Railroads		0 0	2.12 Sul	bstrate Com	position		Bank Erosion	Left	Right	(old) Upstrm	Flow Reg	
height		0 0	Bedroc	:k	0	%	Erosion Length		8			
Improved Paths		0 0	Boulde	r	0	%	Erosion Height		3.00			
height		0 0	Cobble)	3	%	Revetmt. Type	None	None			
Development		0 0	Coarse	Gravel	24		Revetmt. Lengt		0			
1.4 Adjacent Side	Le	ft Right	Fine G		44		Near Bank Veg.		Right	4.9 # of Beave	r Dams	1
Hillside Slope	Hill	y Very Steep	Sand		29		Dominant	Shrubs/Saplin	Herbaceous	Affected Le		50
Continuous w/	Neve	er Never		d smaller		%	Sub-dominant		Shrubs/Saplin		•	Planform Changes
W/in 1 Bankfill	Neve	er Never	One and	a sindici	0	/0	Bank Canopy	Left	Right	5.1 Bar Types	<u>or Bou unu r</u>	
Texture	Not Evalu	a Not Evalua	Silt/Clay	Present?	Yes		Canopy %	51-75	26-50	Mid	Point	Side
1.5 Valley Features			Detritus		0 %		Mid-Channel Ca		Open	3	5	6
Valley Width	•		# Large	Woody	22		3.2 Riparian Buf			J Diagonal	Delta	Island
Width Determinat	. ,	mated	2.13 Ave	erage Large	st Particle	on	Buffer Width	Left	Right	<u>Diagonai</u> 1	<u>Dena</u> 0	0
Confinement Ty		/ Broad	Bed	8.2	inc	hes	Dominant	>100	>100	-	-	-
Rock Gorg			Bar	3.2	inc	hes	Sub-dominant	51-100	None	5.2 Other Feat		on Braiding
Human-caused Cha	•	c					W less than 25	-	0 Diabt	Flood Neck C	utoff <u>Avulsic</u>	
Step 2. Strea			2.14 Str	eam Type			Buffer Veg. Typ		Right	5.3 Steep Riffle	• bead head (Cute
2.1 Bankfull Width	ename	<u>.</u> 21	Str	ream Type:	E		Dominant	Shrubs/Saplin	-		Head Cuts	Trib Rejuv.
2.2 Max Depth (ft)		2.85		ed Material:			Sub-dominant		Herbaceous	<u>Steep Killes</u>		No
2.3 Mean Depth (ft))	2.29		lass Slope:			3.3 Riparian Cor		Distri	5.4 Stream For	d or Animal	No
2.4 Floodprone Wid		753		Bed Form:		ol	Corridor Land		Right	5.5 Straighteni		None
· · ·		755		leasured Slo	-		Dominant	Shrubs/Saplin	-	Straighteni	-	0
Notes:				ference Stre	<u> </u>		Sub-dominant	Residential	None	5.5 Dredging	ig Longui.	None
Reach is channel th area to wetland that	-		(if di	fferent from	Phase 1)		Mass Failures	0	0	5.5 <u>2.55</u> ging		
dams. Planform has	•	•					Height	0	0	Note: Step 1.6	- Grade Con	trols
beaver activity withi			3.3 old	Amount	Mean H	leight	Gullies		0	and Step 4.8 -		
, ,			Failures	None		0.00	Length		0	are on The sec		
			Gullies	None		0.00	Height		0.00	report - with St	eps 6 through	n 7.

Project: Stream: Organizatioi	Kingsbury Bran Dugar Bro n: Bear Creek		ntal	Reach # Observers:	Phase 2 Reac T3.08S1.01 PD, AA	h Summary	page 2 of 2 Segment: B		Completion	Date: Rain:	April 26, 2010 September 23, No
Segment Le	ength (ft):	900	Segmen	t Location:	Segment beg	ins where wetl	and channel is n	ot influe	nced by bea	ver da	ms and
1.6 Grac	de Controls None						Step 7. Rapi	d Geomoi	phic Assessm	ent Dat	а
Tupo	Location	Total	Total Height	Photo Ta	^{k∉™} GPSTaken	Co	onfinement Type	Unconf	ined		_
Туре	Location	Total	Above Water		GESTAKEIT				Score	STD	Historic
						7.1 Channel [Degradation		10	None	Yes
						7.2 Channel A	Aggradation		8	None	Νο
						7.3 Widening	Channel		16		Νο
						7.4 Change ir	n Planform		15		Νο
							Tota	al Score	49		
							Geomorphic	Rating	0.6125		
							Channel Evolution Channel Evolutio Geomorphic Co Stream Se	n Stage ondition	F IV Fair Extreme		
							Step 6. Rapid Hab				
4.8 Chan	nel Constrictions					S	Stream Gradient Ty	pe L	WO		
_	Photo	GPS Ch		oodprone						core	
Туре	Width Taken?	Taken? Co	onstriction? Co	onstriction?		6.1 Epifaunal Su	ubstrate - Available			13	
Bridge	30.0 Yes	Yes	No	No			6.2 Pool Sul			15	
Pro	oblem Depositio	on Below					6.3 Pool Var	5		12	
							6.4 Sediment Dep 6.5 Channel Flow			9 17	
							6.6 Channel Alte			18	
							6.7 Channel Sir			8	
							6.8 Bank S	5	Left: 10		: 10
						6.9 Ba	ank Vegetation Pro	5	Left: 8		
							an Vegetation Zone		Left: 8	•	
							-	Score		45	
							Habitat			725	
							Habitat Stream	Condition	(Good	

Major historic incision. Some aggradation as seen through softened bed. Minor planform changes in spots due to beaver activity. Stream does not seem to be widening.

	ry Branch Igar Brook	Rea	Phase ach # T3.08S1	2 Segment S		ge 1 of 2 gment: C	•	10 SGAT Version: 4.56 September 23, 2009
	r Creek Environm		vers: PD, AA	-		Not assessed:	•	Rain: No
Segment Length (ft):	900			nt begins where	•		and continues until	just upstream of a
QC Status - Staff: Pro	ovisional Cons		2. (Contued)	-	3. Riparian Featu			/ & Flow Modifiers
Step 1. Valley a		2.5 Aband. Floodpln	2.95 ft.	3.1 Stream Bank	•		4.1 Springs / Seeps	Abundant
1.1 Segmentation Bank		Human Elev Floodpl	-	Typical Bank SI			4.2 Adjacent Wetlan	
-	lone	2.6 Width/Depth Ratio		Bank Texture	Left	Right	4.3 Flow Status	Moderate
1.3 Corridor Encroachm	ents	2.7 Entrenchment Ra		Upper			4.4 # of Debris Jams	s 2
Length (ft)	One Both	2.8 Incision Ratio	1.00	Material Type	Sand	Sand	4.5 Flow Regulation	Type None
Berms	0 0	· I have a set Electron to all here i	Rat 0.00	Consistency	Non-cohesive	Non-cohesive	Flow Regulation U	se
height	0 0	0.0 Cinunaity	Moderate	Lower			Impoundments	
Roads	900 0		Sedimented	Material Type	Mix	Mix	Impoundmt. Locati	on
height	0 (2.11 Riffle/Step Spac	ing (ft) 58	Consistency	Non-cohesive	Non-cohesive	4.6 Up/Down strm flo	ow reg None
Railroads	0 0			Bank Erosion	Left	Right	(old) Upstrm Flow	Reg
height	0 0	Bedrock	0%	Erosion Length	(ft) 21	36	4.7 StormwaterInputs	
Improved Paths	0 0	Boulder	2%	Erosion Height	(ft) 3.00	2.55	Field Ditch 0	Road Ditch 1
height	0 0		5 %	Revetmt. Type	None	None	Other 0	Tile Drain 0
Development	0 0		40 %	Revetmt. Lengt	h (ft) 0	0	Overland Flow 0	Urb Strm Wtr Pipe 0
1.4 Adjacent Side	Left Righ		-10 %	Near Bank Veg.	Type Left	Right	4.9 # of Beaver Dar	ns 0
Hillside Slope Ext			20 % 25 %	Dominant	Shrubs/Saplin S	Shrubs/Saplin	Affected Length	113
Continuous w/Som		Janu		Sub-dominant	Herbaceous	Herbaceous	-	ed and Planform Changes
W/in 1 Bankfill Som		Sill and smaller	0%	Bank Canopy	Left	Right		and Flamorin Changes
Texture	Sand Not Evalua		Yes	Canopy %	51-75	51-75	5.1 Bar Types	int Oid-
1.5 Valley Features		Detritus	0 %	Mid-Channel Ca	anopy	Open		
Valley Width (ft)	470	# Large Woody	65	3.2 Riparian Buf	fer			5 9
Width Determination	Estimated	2.13 Average Larges	t Particle on	Buffer Width	Left	Right		Island
		Bed 7.5	inches	Dominant	26-50	>100	2 (-
Confinement Type	Very Broad	Bar 4.1	inches	Sub-dominant	51-100	None	5.2 Other Features	<u>Braiding</u>
Rock Gorge?	No		inches	W less than 25	153	0	Flood Neck Cutoff	<u>Avulsion</u> 0
Human-caused Change		2.14 Stream Type		Buffer Veg. Typ		Right	0 1	0
Step 2. Stream C		Stream Type:	E	Dominant		Shrubs/Saplin	5.3 Steep Riffles and	
2.1 Bankfull Width	21	Bed Material:			Shrubs/Saplin	Herbaceous	Steep Riffles Hea	
2.2 Max Depth (ft)	2.95	Subclass Slope:		3.3 Riparian Cor	ridor			No
2.3 Mean Depth (ft)	2.05	Bed Form:		Corridor Land	Left	Right	5.4 Stream Ford or /	
2.4 Floodprone Width (ft) 450	_ Field Measured Slop	pe:	Dominant	Residential	Shrubs/Saplin	5.5 Straightening	None
Notes:		2.15 Reference Strea	am Type	Sub-dominant	Shrubs/Saplin	Forest	Straightening Le	•
Lots of sediment workin		(if different from F	Phase 1)	Mass Failures	0	0	5.5 Dredging	None
reach. High elevation ba	ars.			Height	0	0	Nata: Otra 4.0.0	de Ceretrele
		3.3 old Amount	Mean Height	Gullies		0	Note: Step 1.6 - Gra and Step 4.8 - Chan	
		Failures None	0.00	Length		0	are on The second p	
		Gullies None	0.00	Height		0.00	report - with Steps 6	5
			0.00	U U				- 5

Project: Stream: Organizatic	Kingsbury Brand Dugar Brod on: Bear Creek B			Phase 2 Read T3.08S1.01 PD, AA	h Summary	page 2 of 2 Segment: C		Completi	on Date: Rain:	April 26, 2010 September 23, No
Segment L	ength (ft):	900	Segment Location:	Segment beg	ins where bu	ffer turns more for	ested a	nd continu	ies until	just upstream of
1.6 Gra	de Controls					Step 7. Rapi	d Geomo	rphic Asses	sment Da	ta
Tupo	Location	Lotal	otal Height Photo Ta	ake GPSTaken		Confinement Type	Unconf	fined		_
Туре		A		GFSTAKEI				Score	STD	Historic
Ledge	Mid-segment	12.00 9.	.00 Yes		7.1 Channe	el Degradation		14	None	No
					7.2 Channe	el Aggradation		9	None	Νο
					7.3 Widenir	ng Channel		15		Νο
					7.4 Change	e in Planform		14		Νο
							I Score	52		
						Geomorphic	Rating	0.65		
						Channel Evolution Channel Evolution Geomorphic Co Stream Se	n Stage	D IId Good High		
						Step 6. Rapid Hab			a	
4.8 Char	nnel Constrictions					Stream Gradient Ty	pe L	_ow	_	
_		GPS Chani	nel Floodprone						Score	
Туре	Width Taken?	Taken? Const	triction? Constriction?		6.1 Epifaunal	Substrate - Available			17	
Bedrock			Yes Yes			6.2 Pool Sub			16	
	-		sition Below,Scour			6.3 Pool Var 6.4 Sediment Dep	5		14 10	
Bedrock			No Yes sition Below,Scour			6.5 Channel Flow			10 8	
E I	TODIEIII Depositioi	TADOVE, Depus	SITION DEIOW, SCOU			6.6 Channel Alte			18	
						6.7 Channel Sir			13	
						6.8 Bank S	5	Left:	9 Right	: 9
					6.9	Bank Vegetation Pro	5		9 Right:	
						rian Vegetation Zone			6 Right:	
					· ·		Score		149	
						Habitat	Rating		0.745	
Narrative			ih reach. large bars (h			Habitat Stream			Good	

Major aggradation, sediment working through reach, large bars (high elevation on some). Potential for change in planform; some neck cut offs.

	ry Branch Igar Brook			Re	ach #		2 Segment S	<i>y</i> ann an y	page 1 of 2 Segment: 0			GAT Version: 4.56 ember 23, 2009
	r Creek En		ntal		rvers: I				hy Not assesse	•		Rain: No
Segment Length (ft):		1,694					begins at top of			ere stream beco	mes close	to road and is
QC Status - Staff: Pro	ovisional C	ons	Passed	•	o 2. (Cor			3. Riparian Fe		1		w Modifiers
Step 1. Valley ar				nd. Floodpln		2.40 ft.	3.1 Stream Bank	-	aluies	4.1 Springs / S		Abundant
1.1 Segmentation None				Elev Floodp		0.00 ft.	Typical Bank Sl			4.2 Adjacent W	•	None
-	lone			h/Depth Rat		16.35	Bank Texture	Le	eft Right	4.3 Flow Statu		Moderate
1.3 Corridor Encroachme	ents			enchment R		1.40	Upper			4.4 # of Debris	Jams	0
Length (ft)	One	Both	2.8 Incis	ion Ratio		1.00	Material Type	Sar	d Sand	4.5 Flow Regu	lation Type	None
Berms	0	0	Human E	Elevated Inc	Rat	0.00	Consistency	Non-cohesiv	ve Non-cohesiv	e Flow Regulat	ion Use	
height	0	0	2.9 Sinu	osity		Low	Lower			Impoundmer	ts	
Roads	1,694	0	2.10 Riff	les Type	Comp	olete	Material Type	Grav	el Gravel	Impoundmt.	_ocation	
height	0	0	2.11 Riff	le/Step Spa	cing (ft)	61	Consistency	Non-cohesiv	e Non-cohesiv	re 4.6 Up/Down s	trm flow reg	None
Railroads	0	0	2.12 Sub	strate Com	position		Bank Erosion	Le		(old) Upstrm	Flow Reg	
height	0	0	Bedroc	k		0%	Erosion Length	()	9 68	4.7 Stormwater	nputs	
Improved Paths	0	0	Boulder	r	1	4%	Erosion Height	(ft) 2.0	0 4.02	Field Ditch	0 Road	d Ditch 2
height	0	0	Cobble			24%	Revetmt. Type	Rip-Ra	ip None	Other	0 Tile D	Drain 0
Development	0	0	Coarse			27%	Revetmt. Lengt	h (ft) 16	8 0	Overland Flow	ו 1 Urb נ	Strm Wtr Pipe 0
1.4 Adjacent Side	Left	Right	Fine Gr			26 %	Near Bank Veg.	Type Le		4.9 # of Beave	er Dams	0
Hillside Slope Ext	tremely V	ery Steep	Sand		-	9 %	Dominant	Deciduou	is Deciduous	Affected L		0
Continuous w/Som	netimes So	ometimes		smaller		0%	Sub-dominant	-			• • •	Planform Change
W/in 1 Bankfill Som	netimes So	ometimes				• 70	Bank Canopy	Le		5.1 Bar Types		<u></u>
Texture	Sand	Sand	Silt/Clay	Present?	N	0	Canopy %	51-7		Mid	Point	Side
1.5 Valley Features			Detritus		0 (%	Mid-Channel Ca		Closed	4	1	12
Valley Width (ft)	89		# Large	Woody	8	2	3.2 Riparian Buf		<i>6</i> D: 1.4	Disease	Delta	Island
Width Determination	Measured	d	2.13 Ave	rage Large	st Particl	e on	Buffer Width	Le			0	0
Confinement Type	Semi-con	nfined	Bed	14.4	i	nches	Dominant	0-2			•	-
Rock Gorge?	No		Bar	4.4	i	nches	Sub-dominant	26-5				sion Braiding
Human-caused Change							W less than 25	85		Flood Neck C	Cutoff Avuls	
Step 2. Stream Cl			2.14 Stre	eam Type			Buffer Veg. Typ Dominant	e <u>Lef</u> Deciduo		5.3 Steep Riffl	es and Head	Cuts
2.1 Bankfull Width	26	i	Str	eam Type:	В					Steep Riffles	Head Cuts	
2.2 Max Depth (ft)	2.40			d Material:			Sub-dominant	=	in nerbaceous		0	No
2.3 Mean Depth (ft)	1.59			ass Slope:			3.3 Riparian Cor		oft Diaht	5.4 Stream Fo	rd or Animal	
2.4 Floodprone Width (f				Bed Form:		ool	Corridor Land	<u>Le</u> Basidanti		5.5 Straighteni		None
Notes:				easured Slo	•		Dominant	Residenti		-	ing Length:	0
Dugar Brook Road encr	oaches uno	n this		erence Stre		-	Sub-dominant	Fore	st Shrubs/Saplin	5.5 Dredging	5 5	None
reach considerably, but			(if dif	ferent from	Phase 1)	Mass Failures		0 0			
incised since there is co							Height		0 0	Note: Step 1.6	- Grade Cor	ntrols
the bed. There are some			3.3 old	Amount	Mean	Height	Gullies		0	and Step 4.8 -	Channel Cor	nstrictions
from the road that are bi			Failures	None		0.00	Length		U	are on The sec		
sediment to the reach. F	Reach is pro	bably	Gullies	None		0.00	Height		0.00	report - with S	teps 6 throug	gh 7.

Project: Stream: Organizatio	Kingsbury Bran Dugar Bro on: Bear Creek	ook	nental	Reach # Observers:	Phase 2 Read T3.08S1.02 PD, AA	ch Summary	page 2 of 2 Segment: 0		Completio	on Date: S Rain:	April 26, 2010 September 23, No
Segment L	ength (ft):	1,694	Segm	ent Location:	Reach begins	at top of bed	rock grade control w	vhere st	tream be	comes cl	ose to road and
1.6 Gra	ade Controls						Step 7. Rapid G	Geomorp	hic Assess	sment Dat	a
Туре	Location	Total	Total Heigl Above Wat	ht Photo Ta ter	^{ik∉™} GPSTaken	(Confinement Type C	Confined	d Score	STD	- Historic
Ledge	Mid-segment	6.00	5.00	Yes			-	ating 1odel I Stage I dition (None None	No No No
	anal Canatuiationa	Nana					Step 6. Rapid Habitat Stream Gradient Type		ment Data i gh	<u>)</u>	
4.8 Cha		None		Ele e du neu e			Stream Gradient Type	•••	gn	Score	
Туре	Photo Width Taken?		Channel Constriction?	Floodprone Constriction?		6.1 Epifaunal S	Substrate - Available Co	over		15	
51	rukerr.	Tukom	constriction				6.2 Embeddedn			15	
						6	5.3 Velocity/Depth Patte	erns		14	
							6.4 Sediment Deposi	ition		13	
							6.5 Channel Flow Sta	atus		16	
							6.6 Channel Altera	tion		17	
						6.7	Frequency of Riffles/St	teps		16	
							6.8 Bank Stab	oility	Left: 1	0 Right	: 9
						6.9	Bank Vegetation Protect	tion	Left:	6 Right:	9
						6.10 Ripar	ian Vegetation Zone Wi	/idth	Left: 1	Right:	10
							Total Sc	core		151	
							Habitat Rat	ting	(0.755	
Narrative		c 1		- 1			Habitat Stream Cor is difficult to know for			Good	

Channel has not incised because of bedrock control. The reach is probably naturally straight, but it is difficult to know for sure.

Stream:	bury Brand Dugar Brod	ok	4.51		ach # T3.	08S1	2 Segment S .03	Se	age 1 of 2 gment: 0		ate: Septe	AT Version: 4.56 mber 30, 2009
0		Environmer 1,302			rvers: PD,		t haging near (,	Not assessed:	oontinuoo until		Rain: Yes
Segment Length (f	,			•		-	-	•	1	continues until	-	
QC Status - Staff:			Passed		2. (Contue	<u> </u>		3. Riparian Feat	ures		Flow & Flow	
Step 1. Valley		apiain		nd. Floodpln		65 ft.	3.1 Stream Bank			4.1 Springs / Se	•	Abundant
1.1 Segmentation N				Elev Floodp		00 ft.	Typical Bank Sl Bank Texture	Left	Right	4.2 Adjacent We 4.3 Flow Status	lianus	Abundant Moderate
1.2 Alluvial Fan	None			h/Depth Rat		.88	Upper		<u>rtight</u>	4.3 Flow Status 4.4 # of Debris J	ame	0
1.3 Corridor Encroac			2.7 Entre 2.8 Incisi	enchment Ra		.50 .38	Material Type	Sand	Sand	4.5 Flow Regula		None
Length (ft)	One	Both					Consistency	Non-cohesive	Non-cohesive	-		NONE
Berms	0	0		Elevated Inc		.00	Lower	NON-CONESIVE	Non-conesive	Impoundments		
height	0	0	2.9 Sinue	•	Modera		Material Type	Silt	Silt	Impoundmt. Lo		
Roads	209	0	2.10 Riff		Complete		Consistency	Cohesive	Cohesive	•		None
height	0	0		le/Step Spa		25	Bank Erosion			(old) Upstrm F		NONE
Railroads	0	0		ostrate Com			Erosion Length	(ft) <u>Left</u> 166	Right 133	(olu) opsim P	low Rey	
height	0	0	Bedroc	k	0%		Erosion Height		4.15			
Improved Paths	0	0	Boulder	r	13%	5	•	None	None			
height	0	0	Cobble		35 %	,	Revetmt. Type					
Development	0	0	Coarse	Gravel	30 %	5	Revetmt. Lengt	. ,	0			
1.4 Adjacent Side	Left	Right	Fine Gr	ravel	14%	5	Near Bank Veg.		Right	4.9 # of Beaver	Dams	0
Hillside Slope		Very Steep	Sand		8%		Dominant	Shrubs/Saplin	-	Affected Ler	ngth (ft)	0
Continuous w/	Never	Sometimes	Silt and	l smaller	0%		Sub-dominant	Herbaceous	Deciduous	Step 5. Channe	I Bed and F	Planform Changes
W/in 1 Bankfill	Never	Sometimes		_			Bank Canopy	<u>Left</u> 51-75	<u>Right</u> 51-75	5.1 Bar Types		
Texture	Not Evalua	Sand	-	Present?	Yes		Canopy %			Mid	Point	Side
1.5 Valley Features			Detritus		0 %		Mid-Channel Ca	• •	Open	1	1	5
Valley Width	(ft) 300		# Large \	Woody	20		3.2 Riparian Buf		Disht	Diagonal	Delta	Island
Width Determination	on Measu	red	2.13 Ave	erage Larges	st Particle or	<u>n</u>	Buffer Width	Left	Right	0	0	0
Confinement Ty	pe Very B	road	Bed	15.8	inch	es	Dominant	>100	>100 Norro	5.2 Other Featu	•	-
Rock Gorg			Bar	7.3	inch	es	Sub-dominant	51-100	None			on Braiding
Human-caused Cha							W less than 25	0	0 Diabt	Flood Neck Cu	toff <u>Avulsic</u>	$\frac{m}{2}$ \setminus 0
Step 2. Strean	-		2.14 Stre	eam Type			Buffer Veg. Typ		Right	5.3 Steep Riffles	•	Cute
2.1 Bankfull Width		21	Str	eam Type:	E		Dominant	Shrubs/Saplin	-	•		
2.2 Max Depth (ft)		65	Be	d Material:	Gravel		Sub-dominant		Mixed Trees		Head Cuts	Trib Rejuv.
2.3 Mean Depth (ft)		94	Subcl	ass Slope:	b		3.3 Riparian Cor			0 5.4 Stream Ford	U Lor Animal	No No
1 ()				Bed Form:	Riffle-Pool		Corridor Land	Left	Right	5.5 Straightenin		None
2.4 Floodprone Wid	ith (it) 2	64	Field M	easured Slo	pe:		Dominant	Shrubs/Saplin	Forest	-	-	0
Notes:			2.15 Ref	ference Stre	am Type		Sub-dominant	Residential	Shrubs/Saplin	Straightenin 5.5 Dredging	y Lengui.	0 None
Reach has experien			(if dif	ferent from	Phase 1)		Mass Failures	0	0	5.5 Dreuging		NONE
Large flood chutes a	and deposition	hal bars.					Height	0	0	Note: Step 1.6 -	Grade Cont	trole
			3.3 old	Amount	Mean He	ight	Gullies		0	and Step 4.8 - C		
			Failures	None	-	.00	Length		0	are on The seco		
			Gullies	None	0.	.00	Height		0.00	report - with Ste	ps 6 through	ı 7.

Kingsbury BranchPhase 2 Rtream:Dugar BrookReach #Organization:Bear Creek EnvironmentalObservers:PD, DC	each Summarypage 2 of 2April 26, 2010O3Segment: OCompletion Date: September 30, Rain: Yes
egment Length (ft): 1,302 Segment Location: Segment	begins near the top of the waterfalls and continues until just below bedrock
1.6 Grade Controls None	Step 7. Rapid Geomorphic Assessment Data
Total Height Photo Take GPSTake	Confinement Type Unconfined
Type Location Total Above Water GPSTake	Score STD Historic
	7.1 Channel Degradation 14 None Yes
	7.2 Channel Aggradation 9 None No
	7.3 Widening Channel 8 No
	7.4 Change in Planform 7 No
	Total Score 38
	Geomorphic Rating 0.475
	Channel Evolution Model F
	Channel Evolution Stage III
	Geomorphic Condition Fair
	Stream Sensitivity Extreme
	Step 6. Rapid Habitat Assessment Data
4.8 Channel Constrictions None	Stream Gradient Type High
Photo GPS Channel Floodprone	Score
Type Width Taken? Taken? Constriction? Constriction?	6.1 Epifaunal Substrate - Available Cover 10
	6.2 Embeddedness 11
	6.3 Velocity/Depth Patterns 13
	6.4 Sediment Deposition 5
	6.5 Channel Flow Status 8
	6.6 Channel Alteration 18
	6.7 Frequency of Riffles/Steps 17
	6.8 Bank Stability Left: 7 Right: 7
	6.9 Bank Vegetation Protection Left: 9 Right: 9
	6.10 Riparian Vegetation Zone Width Left: 8 Right: 10
	Total Score 132
	Habitat Rating 0.66
Narrative:	Habitat Stream Condition Good

Channel incised slightly and then widened. Large flood chutes and depositional bars. Major aggradation and change in planform.

Project: Kingsbur Stream: Due	y Branc gar Broc			Rea	Phas ach # T3.08	e 2 Segment S 51.04		ge 1 of 2 gment: A	April Completion	26, 2010 SG Date: Septe		
	-	Invironmer	tal		vers: PD, D			Not assessed:	•	•	Rain: Yes	
Segment Length (ft):		197				ent begins at the	•					
QC Status - Staff: Pro	visional	Cons	Passed	·	2. (Contued)		3. Riparian Feat		-	. Flow & Flow		
Step 1. Valley an				d. Floodpln	0.00		•		4.1 Springs / S		Abundan	
1.1 Segmentation Grade		-		lev Floodpl	-	J. T Olieani Danka			4.2 Adjacent V	-	None	
-	one	•		/Depth Rati			Left	Right	4.3 Flow Statu		Moderate)
1.3 Corridor Encroachme	ents			nchment Ra					4.4 # of Debris	Jams	0	
Length (ft)	One	Both	2.8 Incisio	on Ratio	0.00		Bedrock	Bedrock	4.5 Flow Regu	llation Type	None	
Berms	0	0	Human E	levated Inc	Rat 0.00	Consistency	Cohesive	Cohesive	Flow Regula	tion Use		
height	0	0	2.9 Sinuc	sity		Lower			Impoundmer	nts		
Roads	184	0	2.10 Riffle	es Type		Material Type	Bedrock	Bedrock	Impoundmt.	Location		
height	0	0		e/Step Spac	ing (ft) 0	Consistency	Cohesive	Cohesive	4.6 Up/Down s	strm flow reg	None	
Railroads	0	0		strate Comp		Bank Erosion	Left	Right	(old) Upstrm	Flow Reg		
height	0	0		•		Erosion Length ((ft) 14	0	4.7 Stormwater	Inputs		
Improved Paths	0	0				Erosion Height (ft) 2.00	0.00	Field Ditch	0 Road	Ditch	1
height	0	0				Revetmt. Type	Hard Bank	Hard Bank	Other	0 Tile D	rain	0
Development	0	24				Revetmt. Length	n (ft) 30	29	Overland Flow	v 0 Urb S	trm Wtr Pipe)
1.4 Adjacent Side	Left	Right				Near Bank Veg. 1	Гуре Left	Right	4.9 # of Beav		0	
Hillside Slope Ext	remely	Extremely				Dominant	Deciduous	Deciduous	Affected L		0	
Continuous w/Som	etimes S	Sometimes				Sub-dominant	Herbaceous	Herbaceous	Step 5. Chan	•	- Planform Cl	hando
W/in 1 Bankfill Som	etimes \$	Sometimes				Bank Canopy	Left	Right	5.1 Bar Types			lange
Texture	Sand	Bedrock	Silt/Clay I	Present?		Canopy %	76-100	76-100	Mid	Point	Side	
1.5 Valley Features			Detritus		0 %	Mid-Channel Ca	nopy C	losed	1	0	<u>- 1</u>	
Valley Width (ft)	77		# Large V	Voody	0	3.2 Riparian Buffe				•	-	
Width Determination	Measur	ed	2.13 Ave	age Larges	t Particle on	Buffer Width	Left	Right	Diagonal	Delta	Island	
Confinement Type	Semi-co		Bed	0.0		Dominant	51-100	>100	0	0	0	
Rock Gorge?	Yes	Jiiiieu	Bar	0.0		Sub-dominant	26-50	51-100	5.2 Other Fea		Braidin	<u>ig</u>
Human-caused Change						W less than 25	30	0	Flood Neck C		<u>on</u> \ 0	
Step 2. Stream Ch			2.14 Stre	am Type		Buffer Veg. Type		Right	• •	•	0	
2.1 Bankfull Width	anner	0		am Type:	В	Dominant	Mixed Trees	Mixed Trees	5.3 Steep Riffl			
	0.0	-	Bec	Material:	Cobble	Sub-dominant	=	Herbaceous	Steep Riffles	Head Cuts	Trib Rej	
2.2 Max Depth (ft)				ss Slope:		3.3 Riparian Corr			0 5 4 Stroom Eo	U Indian Animal	No	
2.3 Mean Depth (ft)	0.0		E	Bed Form:	Step-Pool	Corridor Land	Left	Right	5.4 Stream Fo		No	
2.4 Floodprone Width (f	t)	0	Field Me	easured Slo	pe:	Dominant	Residential	Forest	5.5 Straighten	-	Straight	ening 87
Notes:			2.15 Refe	erence Strea	am Type	Sub-dominant	Forest	Residential	5.5 Dredging	ing Length:	-	None
Reach contains several	•		(if diff	erent from F		Mass Failures	0	10	5.5 Dreuging			NUTIC
controls that were all add	-		B 3	а	Step-Pool	Height	0	13	Note: Step 1.6	S - Grade Con	trole	
Reach is very stable apa failure just downstream of			3.3 old	Amount	Mean Heigh	Gullies		0	and Step 4.8 -			
a result of rip-rap failure			Failures	One	13.00	- Laurantha		0	are on The sec			
valley is well forested. D		•	Gullies	None	0.00	11.1.1		0.00	report - with S			

Project: Stream: Organizatic Segment Le		ok		Observers:	-	-	page 2 of 2 Segment: A ttom of the ledge grade co	Completion Date: Rain: ntrols just downst	Yes
	de Controls		009				Step 7. Rapid Geomo	-	
Туре	Location	Total	Total Height Above Water	Photo Ta	^{ke –} GPSTaken		Confinement Type		<u></u>
Ledge	Mid-segment	27.00	23.00	Yes					
							Channel Evolution Model Channel Evolution Stage Geomorphic Condition Stream Sensitivity	Good	
4.8 Char	nnel Constrictions						Step 6. Rapid Habitat Asses Stream Gradient Type	ssment Data	
	Width Taken?	Taken? Co Yes	onstriction? Co Yes	oodprone onstriction? Yes					
Narrative	2:						Habitat Stream Conditior	1	

•	ry Branch gar Brook			Reach	Phase # T3.08S	2 Segment S	o annan y	ige 1 of 2 gment: B			AT Version: 4.56 mber 30, 2009
	r Creek Envir	onmer	ntal	Observers	S: PD, DC			Not assessed:	•	-	Rain: Yes
Segment Length (ft):	1,1	57	Segm	nent Locatior	n: Segme	nt begins just ι	upstream of Ap	ple Hill Road o	crossing and c	ontinues ab	out 1150 feet
QC Status - Staff: Pro	ovisional Cons	\$	Passed		Contued)		3. Riparian Feat	-		. Flow & Flow	
Step 1. Valley ar			2.5 Aband.		3.00 ft.	3.1 Stream Ban			4.1 Springs / S		Abundant
1.1 Segmentation Grad		_	Human Ele	-	0.00 ft.	Typical Bank S			4.2 Adjacent V	•	Abundant
-	lone		2.6 Width/D	•	21.64	Bank Texture	Left	Right	4.3 Flow Statu		Moderate
1.3 Corridor Encroachme	ents			hment Ratio	1.59	Upper			4.4 # of Debris	Jams	0
Length (ft)	One	Both	2.8 Incision	Ratio	1.43	Material Type	Sand	Sand	4.5 Flow Regu	llation Type	None
Berms	0	0	Human Ele	vated Inc Rat	0.00	Consistency	Non-cohesive	Non-cohesive	Flow Regula	tion Use	
height	0	0	2.9 Sinuosi	ty	Low	Lower			Impoundmer	nts	
Roads	1,157	0	2.10 Riffles	Туре Е	roded	Material Type	Boulder/Cobbl I	Boulder/Cobbl	Impoundmt.	Location	
height	0	0	2.11 Riffle/S	Step Spacing	(ft) 110	Consistency	Non-cohesive	Non-cohesive	4.6 Up/Down s	strm flow reg	None
Railroads	0	0	2.12 Substr	ate Composit	ion	Bank Erosion	Left	Right	(old) Upstrm	Flow Reg	
height	0	0	Bedrock		0%	Erosion Length		66	4.7 Stormwater	Inputs	
Improved Paths	0	0	Boulder		17%	Erosion Height	(ft) 5.19	2.68	Field Ditch	0 Road	Ditch 1
height	0	0	Cobble		35%	Revetmt. Type	Multiple	Multiple	Other	0 Tile D	rain 0
Development	52	2	Coarse G	avel	27 %	Revetmt. Lengt	th (ft) 444	29	Overland Flow	v 0 Urb St	rm Wtr Pipe 0
1.4 Adjacent Side	Left	Right	Fine Grav		9%	Near Bank Veg.	Type Left	Right	4.9 # of Beav		1
Hillside Slope Ext	tremely Very	Steep	Sand		12%	Dominant	Herbaceous	Coniferous	Affected L		500
Continuous w/Som	netimes Some	times	Silt and sr	naller	0%	Sub-dominant		Shrubs/Saplin		•	Planform Changes
W/in 1 Bankfill Som	netimes Some	times			• /0	Bank Canopy	Left	Right	5.1 Bar Types		lamon on angoa
Texture	Sand	Sand	Silt/Clay Pr	esent?	Yes	Canopy %	26-50	76-100	Mid	Point	Side
1.5 Valley Features			Detritus		0 %	Mid-Channel C		Open	0	0	4
Valley Width (ft)	107		# Large Wo	ody	15	3.2 Riparian But			Diagonal	Delta	
Width Determination	Measured		2.13 Avera	ge Largest Pa	rticle on	Buffer Width	Left	Right	0		Island 0
Confinement Type	Narrow		Bed	12.1	inches	Dominant	0-25	>100	-	-	-
Rock Gorge?	No		Bar	7.4	inches	Sub-dominant	26-50	51-100	5.2 Other Fea		n Braiding
Human-caused Change						W less than 25		0 Diabt	Flood Neck (
Step 2. Stream Cl			2.14 Strear	n Type		Buffer Veg. Typ		Right	5.3 Steep Riff	•	Cute
2.1 Bankfull Width	29		Stream	m Type: B		Dominant	Herbaceous	Coniferous	Steep Riffles	Head Cuts	Trib Rejuv.
2.2 Max Depth (ft)	2.10		Bed N	Aaterial: Cob	ble		Shrubs/Saplin	Herbaceous			No
2.3 Mean Depth (ft)	1.34			s Slope: Non		3.3 Riparian Co		Dist	0 5.4 Stream Fo	0 ord or Animal	No
2.4 Floodprone Width (f				d Form: Riffl	e-Pool	Corridor Land	Left	Right	5.5 Straighten		Straightening
· · · · · · · · · · · · · · · · · · ·				sured Slope:		Dominant	Residential	Forest	-	ing Length:	740
Notes:				ence Stream T		Sub-dominant	•	Residential	5.5 Dredging		None
Segment has been impa placement. It has been s		Ч	(if differ	ent from Phas	se 1)	Mass Failures	0	0			
armored with rip-rap and						Height	0	0	Note: Step 1.6	6 - Grade Cont	trols
been modified such that			3.3 old A	Amount M	ean Height	Gullies		0	and Step 4.8 -		
stream type departure ir			Failures N	lone	0.00	Length		0	are on The se	1 0	
segment. There is a small	all section of pla	ane	Gullies N	lone	0.00	Height		0.00	report - with S	Steps 6 through	ו 7.

Segment Length (ft): 1.6 Grade Controls	Creek Environn	nental	Reach # Observers:	T3.08S1.04 PD, DC	h Summary	page 2 of 2 Segment: B		Completio	on Date: S Rain: S	April 26, 2010 September 30, Yes
1.6 Grade Controls	1,157			=	ins just upstro	eam of Apple Hill R	load cro	ssing and		
1.0 Grade Controls						Step 7. Rapid	l Geomor	phic Assess	ment Data	a
Type Location	n Total	Total Heigh		ake GPSTaken	(Unconf		STD	– Historic
Ledge Mid-se	gment 4.00	2.00	Yes		7 1 Channe	I Degradation		7	C to B	Yes
Ledge Mid-se	ament 5.00	3.00	Yes			I Aggradation		13	None	No
	JIIIOITE	0.02			7.3 Widenin	••		11	•••	No
						in Planform		11		Νο
							Score	42		
						Geomorphic	Rating	0.525		
						Channel Evolution	Model	F		
						Channel Evolution		II		
						Geomorphic Co	-	Fair		
						Stream Sen	sitivity	High		
						Step 6. Rapid Habit	tat Asses	sment Data		
4.8 Channel Constric	tions					Stream Gradient Typ	e H	ligh		
	hoto GPS	Channel	Floodprone						Score	
Type Width Ta	aken? Taken?		Constriction?	>	6.1 Epifaunal	Substrate - Available	Cover		10	
Bridge 13.0 Y	'es Yes	Yes	Yes			6.2 Embedde	dness		13	
0	our Above,Scour				6	6.3 Velocity/Depth Par			17	
	'es Yes	Yes	Yes			6.4 Sediment Depo			14	
Problem Der	position Below,	Scour Above,S	Scour			6.5 Channel Flow S			13	
						6.6 Channel Alter			4	
					6.7	Frequency of Riffles/	•		16	
						6.8 Bank Sta	5	Left:	•	
						Bank Vegetation Prote			5 Right:	
					6.10 Ripar	rian Vegetation Zone		Left: 2	2 Right:	9
							Score		128	
						Habitat R	Rating		0.64	
Narrative:						Habitat Stream C	Condition		Fair	

Channel evolution is valley type change.

Stream:		ch Pekin Brook Environmer	.tol		Phas ch # T3.033 /ers: PD, SP		Se	age 1 of 2 gment: A 7 Not assessed:	April Completion E		GAT Version: 4.56 ctober 8, 2009 Rain: Yes
Organization: Bo Segment Length (ft		431			•	ent begins at co	,		d continues u	atil ivet ur	
	,			•		1		1			
QC Status - Staff:			Passed	nd. Floodpln	2. (Contued) 3.45 f		3. Riparian Feat	ures	4.1 Springs / S		ow Modifiers Minimal
Step 1. Valley 1.1 Segmentation Ch		•		-			ks lope Undercut		4.1 Springs / St 4.2 Adjacent W	-	Minimal
1.2 Alluvial Fan	None	iensions		Elev Floodplr h/Depth Ratic		Bank Texture	Left	Right	4.3 Flow Status		Moderate
				enchment Rat		Upper		right	4.4 # of Debris		0
1.3 Corridor Encroach				ion Ratio	1.30	Material Type	Sand	Sand	4.5 Flow Regul		None
Length (ft)	One	Both		Elevated Inc F		Consistency	Non-cohesive	Non-cohesive			None
Berms	0	0	2.9 Sinu		Low	Lower	Non-conesive	Non-conesive	Impoundmen		
height	0	0		•		Material Type	Silt	Silt	Impoundmt. L		
Roads	431	0		les Type	Eroded	Consistency	Cohesive	Cohesive	•		None
height	0	0		le/Step Spaci		Bank Erosion	Left	Right	(old) Upstrm		None
Railroads	0	0		ostrate Comp		Erosion Length		213		low rteg	
height	0	0	Bedroc		0%	Erosion Height	()	2.81			
Improved Paths	0	0	Boulde		0%	Revetmt. Type		Multiple			
height	0	0	Cobble		0%	Revetmt. Leng		162			
Development	0	32	Coarse	Gravel	26 %		. ,				
1.4 Adjacent Side	Left	Right	Fine G	ravel	47 %	Near Bank Veg. Dominant	Type Left Herbaceous	Right Herbaceous	4.9 # of Beave	r Dams	0
Hillside Slope	Steep	Very Steep	Sand		27 %				Affected Le	ngth (ft)	0
Continuous w/	Never	Never	Silt and	l smaller	0%	Sub-dominant Bank Canopy	•	- 1	Step 5. Chann	el Bed and	I Planform Changes
W/in 1 Bankfill	Never	Never	0.11/101	D (0)		Canopy %	Left 26-50	<u>Right</u> 26-50	5.1 Bar Types		
Texture	Not Evalua	Not Evalua	-	Present?	Yes				Mid	Point	Side
1.5 Valley Features			Detritus		0%	Mid-Channel C	• •	Open	1	0	3
Valley Width (1	ft) 630		# Large	•	0	3.2 Riparian Bu		Diabt	Diagonal	Delta	Island
Width Determination	on Estim	ated	2.13 Ave	erage Largest	Particle on	Buffer Width	<u>Left</u> 0-25	<u>Right</u> 0-25	0	0	0
Confinement Typ	be Very E	Broad	Bed	1.9	inches	Dominant Sub-dominant	0-25 None	0-25 None	5.2 Other Feat	•	∖ Braiding
Rock Gorge	-		Bar	1.5	inches	W less than 25		403	Flood Neck C		
Human-caused Char										utoff <u>Avula</u>	
Step 2. Stream	-		2.14 Str	eam Type		Buffer Veg. Ty		<u>Right</u> Herbaceous	5.3 Steep Riffle	۔ and Hear عد	1 Cuts
2.1 Bankfull Width		14	Str	eam Type: E	E	Dominant	Herbaceous		· · ·	Head Cuts	
2.2 Max Depth (ft)	2	2.65	Be	d Material:	Gravel	Sub-dominant	None	None			<u>No</u>
2.3 Mean Depth (ft)				ass Slope: N		3.3 Riparian Co			5.4 Stream For	u d or Animal	
2.4 Floodprone Widt		630		Bed Form: F		Corridor Land	Left	Right	5.5 Straighteni		Straightening
· · · ·		530	Field M	easured Slop	e:	Dominant	Residential	Нау	Straighteni	•	422
Notes:			2.15 Re	ference Strea	m Type	Sub-dominant	Pasture	None	5.5 Dredging	ig Lengui.	422 None
There was no valley		•	(if di	ferent from P	,	Mass Failures	0	0	S.C Brouging		Hone
hits Pekin Brook and was estimated. Segn			E 4	Non I	Riffle-Pool	Height	0	0	Note: Step 1.6	- Grade Co	ontrols
and straightened con			3.3 old	Amount	Mean Height	Gullies		0	and Step 4.8 -		
buffer on either side.			Failures	None	0.00	Length		0	are on The sec		
			Gullies	None	0.00	Height		0.00	report - with St	eps 6 throu	gh 7.

Stream:Trib 1 to Pekin BrookReach # T3.03S1.01Organization:Bear Creek EnvironmentalObservers: PD, SP, AA	ch Summarypage 2 of 2April 26, 2010Segment: ACompletion Date:October 8, 2009Rain: Yes
	gins at confluence with Pekin Brook and continues until just upstream of
1.6 Grade Controls None	Step 7. Rapid Geomorphic Assessment Data
Type Location Total Height Photo Take GPSTaken	Confinement Type Unconfined
Above Water GPSTaken	Score STD Historic
	7.1 Channel Degradation 10 None Yes
	7.2 Channel Aggradation12NoneNo
	7.3 Widening Channel13No
	7.4 Change in Planform8No
	Total Score 43
	Geomorphic Rating 0.5375
	Channel Evolution Model F
	Channel Evolution Stage II
	Geomorphic Condition Fair
	Stream Sensitivity Extreme
	Step 6. Rapid Habitat Assessment Data
4.8 Channel Constrictions	Stream Gradient Type Low
Photo GPS Channel Floodprone	Score
Type Width Taken? Taken? Constriction? Constriction?	6.1 Epifaunal Substrate - Available Cover10
Culvert 14.0 Yes Yes Yes Yes	6.2 Pool Substrate 16
Problem Scour Below	6.3 Pool Variability 3
	6.4 Sediment Deposition 5
	6.5 Channel Flow Status 18
	6.6 Channel Alteration 5
	6.7 Channel Sinuosity 3
	6.8 Bank Stability Left: 6 Right: 3
	6.9 Bank Vegetation Protection Left: 6 Right: 5
	6.10 Riparian Vegetation Zone Width Left: 1 Right: 1
	Total Score 82
	Habitat Rating 0.41
Narrative: Evolution stage EII - III, Historic incision: lots of erosion (banks are falling in), but	Habitat Stream Condition Fair

Evolution stage FII - III. Historic incision; lots of erosion (banks are falling in), but has not widened much. Riffles are not formed well from minor aggradation. Planform completely altered due to straightening for road and ag. fields.

Project: Kings Stream:	sbury B Trib 1 t	ranch o Pekin Broo	¢	Re	each #	Phase	2 Segment S	Parriary	age 1 of 2 egment: B	April Completion		AT Version: 4.56 ober 8, 2009
Organization:	Bear Cre	ek Environm	ental	Obse	ervers:	PD, SP,	AA	Wh	y Not assessed:			Rain: Yes
Segment Length ((ft):	965	Se	egment Loo	cation:	Segme	nt begins at cro	ossing of Peki	n Brook Road a	and continues	until conflu	ence with
QC Status - Staff	f: Provisi	onal Cons	Passed	Ste	ер 2. (Coi	ntued)	Step	3. Riparian Fea	tures	Step 4	. Flow & Flow	v Modifiers
Step 1. Valle	ey and F	loodplain	2.5 Aba	nd. Floodplr	า	2.60 ft.	3.1 Stream Bank			4.1 Springs / S		Minimal
1.1 Segmentation (Channel I	Dimensions	Human	Elev Flood	pln	0.00 ft.	Typical Bank S	lope Steep		4.2 Adjacent V	Vetlands	Minimal
1.2 Alluvial Fan	None		2.6 Wid	th/Depth Ra	itio	20.63	Bank Texture	Lef	Right	4.3 Flow Statu	S	Moderate
1.3 Corridor Encroa	chments		2.7 Enti	enchment F	Ratio	12.90	Upper			4.4 # of Debris	Jams	1
Length (ft)	0	ne Both	2.8 Inci	sion Ratio		1.18	Material Type	Sand	Sand	4.5 Flow Regu	lation Type	Small
Berms		0 0		Elevated In	c Rat	0.00	Consistency	Non-cohesive	Non-cohesive	Flow Regula	tion Use	Other
height		0 0	2000	uosity		Low	Lower			Impoundmer	nts	
Roads		65 (fles Type	Sedim	ented	Material Type	Silt	Silt	Impoundmt.	Location	
height		0 0		fle/Step Spa	acing (ft)	175	Consistency	Cohesive	Cohesive	4.6 Up/Down s	strm flow reg	None
Railroads		0 0		bstrate Con			Bank Erosion	Lef		(old) Upstrm	Flow Reg	
height		0 0		ck	·	0%	Erosion Length	(ft) 631	398	4.7 Stormwater	Inputs	
Improved Paths		0 0				1%	Erosion Height	(ft) 2.32	2.62	Field Ditch	0 Road	Ditch 1
height		0 0				18%	Revetmt. Type	Multiple	Multiple	Other	0 Tile D	rain 3
Development		60 17	00000	e Gravel		13 %	Revetmt. Lengt	h (ft) 65	58	Overland Flov		trm Wtr Pipe 0
1.4 Adjacent Side		eft Righ					Near Bank Veg.	Type Left	Right		•	0
Hillside Slope	_			iravei		15%	Dominant	Herbaceous	·	4.9 # of Beav		0
Continuous w/	-		Sanu		4	23%	Sub-dominant	Shrubs/Saplin	Herbaceous	Affected L		-
W/in 1 Bankfill		ver Sometimes	Jintan	d smaller		0%	Bank Canopy	Lef	Right			Planform Changes
	Not Eva		Cilt/Clas	/ Present?	Ye	s	Canopy %	1-25	51-75	5.1 Bar Types	•	.
		du ouin	Detritus		0	%	Mid-Channel C	anopy	Open	Mid	Point	Side
1.5 Valley Features	-	_	# Large			4	3.2 Riparian Buf	fer		2	2	3
Valley Width	. ,			erage Large	est Particl	eon	Buffer Width	Lef	Right	Diagonal	Delta	Island
Width Determinat		timated					Dominant	0-25	26-50	3	0	0
Confinement Ty	• •	ry Broad	Bed	9.0		nches	Sub-dominant	None	>100	5.2 Other Fea	tures	\ Braiding
Rock Gorg	•		Bar	3.8	i	nches	W less than 25	964	628	Flood Neck (Cutoff Avulsio	on \ 0
Human-caused Cha	ange? Y	es	0.44.04	-			Buffer Veg. Typ	be Left	Right	0 0	0	- \
Step 2. Stream		el		ream Type ream Type:	c		Dominant	Herbaceous	Coniferous	5.3 Steep Riffl	es and Head	Suts
2.1 Bankfull Width		26					Sub-dominant	Shrubs/Saplir	Herbaceous	Steep Riffles	Head Cuts	Trib Rejuv.
2.2 Max Depth (ft)		2.20		ed Material:			3.3 Riparian Cor	=		2	0	No
2.3 Mean Depth (ft)	t)	1.26	Subo	lass Slope: Bed Form:			Corridor Land	Lef	Right	5.4 Stream Fo	rd or Animal	Yes
2.4 Floodprone Wid	dth (ft)	336	Field N	Bed Form: leasured SI		001	Dominant	Pasture		5.5 Straighten	ing	Straightening
Notes:	. ,				-		Sub-dominant	Residentia		Straighten	ing Length:	944
Segment is conside	erably imp	acted by		eference Str		_	Mass Failures	Kesidentia (5.5 Dredging		None
agricultural activities			(IT C	ifferent from	Phase 1)		(_			
buffer and animal fo		•					Height	L. L	0	Note: Step 1.6		
bank erosion. Tile d		0	3.3 old	Amount		Height	Gullies		_	and Step 4.8 -		
stormwater inputs a	as well. G	ood CREP	Failures	One		100.00	Length		0	are on The sec		
project location.			Gullies	None		0.00	Height		0.00	report - with S	teps 6 through	۱/.

Stream:Trib 1 to Pekin BrookReach # T3.03S1.0Organization:Bear Creek EnvironmentalObservers: PD, SP, AA	5	April 26, 2010 ion Date: October 8, 2009 Rain: Yes
	egins at crossing of Pekin Brook Road and continue	
1.6 Grade Controls None	Step 7. Rapid Geomorphic Asses	sment Data
Type Location Total Height Photo Take GPSTaken	Confinement Type Unconfined Score	STD Historic
	7.1 Channel Degradation 12	None Yes
	7.2 Channel Aggradation 8	None No
	7.3 Widening Channel 7	Νο
	7.4 Change in Planform 8	Νο
	Total Score 35 Geomorphic Rating 0.4375	
	Channel Evolution Model F Channel Evolution Stage III Geomorphic Condition Fair Stream Sensitivity Very Hig	h
	Step 6. Rapid Habitat Assessment Dat	<u>a</u>
4.8 Channel Constrictions	Stream Gradient Type High	Saara
Photo GPS Channel Floodprone	6.1 Epifaunal Substrate - Available Cover	Score 5
Type Width Taken? Taken? Constriction? Constriction?	6.2 Embeddedness	14
Culvert 5.50 Yes Yes Yes Yes	6.3 Velocity/Depth Patterns	10
Problem Deposition Above, Deposition Below, Scour	6.4 Sediment Deposition	9
	6.5 Channel Flow Status	15
	6.6 Channel Alteration	6
	6.7 Frequency of Riffles/Steps	15
	6.8 Bank Stability Left:	1 Right: 3
	6.9 Bank Vegetation Protection Left:	2 Right: 7
	6.10 Riparian Vegetation Zone Width Left:	2 Right: 3
	Total Score	92
	Habitat Rating	0.46
Narrative:	Habitat Stream Condition	Fair

Very minor incision although small downstream section is more incised due to road probably. Channel has widened due to bank erosion. A large portion of segment (75%) is accessible by pasture cows. Change in planform due to straightening of reach.

Kingsbury Branch

			Phase	Phase 1	Data		Phase 2 Channel Data													
	Corr	Church a rea	Ded		Cub al	CL	Channel Cl		م به ایش بال	Max	Magar	- 	A han ala		Fratranak		Cto a o -	RG/		00
Reach	Seg- ment	Stream Type	веа Material		Subci. Slope		Channel Cl Slope	width		depth				Ratio	Entrench- ment		Evol. V			Stf Aut
M01	0	C	Sand	Plane Bed	None		0.15	46.00		4.7		227.0	7.8	12.30				F Fair	Fair	P P
M02	0	С	Sand	Dune-Ripple	None	No	0.16	58.80		6.3	3.6	360.0	9.1	16.33		1.44		F Fair	Good	ΡΡ
M03	0	E	Sand	Dune-Ripple	None	No	0.23	74.71										Fair		ΡF
M05	0	E	Sand	Dune-Ripple	None	No	0.02	71.89										Good		ΡF
M06	0	E	Sand	Dune-Ripple	None	No	0.07	35.50	35.5	6.7	4.43	360.0	6.7	8.01	10.14	1.00	llc	D Fair	Fair	ΡΡ
M07	0	E	Sand	Dune-Ripple	None	No	0.07	34.20	34.25	5.6	4.33	465.0	6.6	7.91	13.58	1.18	llc	D Fair	Fair	ΡΡ
M08	Α	E	Sand	Dune-Ripple	None	No	0.13	51.03										Fair		ΡF
M08	В	E	Gravel	Riffle-Pool	None	No	0.13	51.03										Fair		ΡF
M09	0	E	Gravel	Riffle-Pool	None	No	0.15	31.50	31.5	4.0	2.72	327.0	6.7	11.58	10.38	1.67		F Fair	Fair	ΡΡ
M10	0	Е	Gravel	Riffle-Pool	None	No	0.29	31.80	31.8	3.7	2.79	308.0	5.6	11.40	9.69	1.51		F Fair	Fair	ΡΡ
M11	А	С	Gravel	Riffle-Pool	None	No	0.63	49.45	45.5	3.65	2.32	709.0	3.65	19.61	15.58	1.00	lld	D Fair	Fair	ΡΡ
M11	В	В	Gravel	Riffle-Pool	С	No	0.63	49.45	48.5	3.0	2.07	78.0	10.0	23.43	1.61	3.33		F Fair	Good	ΡΡ
M12	А	В	Gravel	Plane Bed	None	No	4.72	47.37	36.4	3.5	2.89	58.9	4.6	12.60	1.62	1.31		F Good	Good	ΡΡ
M12	В	А	Cobble	Cascade	None	Yes	4.72	47.37										Good		ΡF
M14	А	С	Gravel	Riffle-Pool	None	No	0.31	47.10										Good		ΡF
M14	В	E	Sand	Dune-Ripple	None	Yes	0.31	47.10	21.0	3.3	2.49	485.0	3.3	8.43	23.10	1.00	llc	D Good	Good	ΡΡ
M14	С	С	Gravel	Riffle-Pool	None	No	0.31	47.10	41.5	3.3	1.9	548.0	3.3	21.84	13.20	1.00	llc	D Good	Good	ΡΡ
M15	А	С	Gravel	Riffle-Pool	None	No	0.43	44.37	40.3	3.1	1.77	650.0	3.1	22.77	16.13	1.00	llc	D Good	Fair	ΡΡ
M15	В	С	Gravel	Riffle-Pool	None	No	0.43	44.37	41.0	3.2	2.0	208.0	3.2	20.50	5.07	1.00	lld	D Fair	Good	ΡΡ
M16	0	С	Gravel	Riffle-Pool	None	No	0.42	43.10	47.0	2.8	1.98	119.0	3.3	23.74	2.53	1.18	llc	D Fair	Good	ΡΡ
T3.01	0	Е	Sand	Dune-Ripple	None	No	0.37	51.73										Fair		ΡF
T3.02	0	E	Sand	Plane Bed	None	No	0.22	31.30	31.3	4.8	3.88	116.0	5.5	8.07	3.71	1.15	llc	D Fair	Fair	ΡΡ
T3.03	А	E	Sand	Dune-Ripple	None	No	0.06	38.00										Good		ΡF
T3.03	В	E	Sand	Dune-Ripple	None	No	0.06	38.00	38.0	4.5	3.5	292.0	4.5	10.86	7.68	1.00	llc	D Fair	Fair	ΡΡ
T3.03S1.01	А	E	Gravel	Riffle-Pool	None	Yes	0.64	24.11	13.8	2.65	1.74	630.0	3.45	7.93	45.65	1.30	II	F Fair	Fair	ΡΡ
T3.03S1.01	В	С	Gravel	Riffle-Pool	None	No	0.64	24.11	26.0	2.2	1.26	335.5	2.6	20.63	12.90	1.18	III	F Fair	Fair	ΡΡ
T3.04	А	Е	Sand	Dune-Ripple	None	Yes	0.17	46.45	29.0	4.0	3.2	418.0	4.0	9.06	14.41	1.00	llc	D Fair	Fair	ΡΡ
T3.04	В	С	Sand	Riffle-Pool	None	No	0.17	46.45	44.0	3.6	2.3	348.0	3.6	19.13	7.91	1.00	llc	D Fair	Fair	ΡΡ
T3.04	С	С	Gravel	Riffle-Pool	None	No	0.17	46.45	33.0	4.25	2.27	312.0	4.95	14.54	9.45	1.16	llc	D Fair	Fair	ΡΡ
T3.05	А	С	Gravel	Riffle-Pool	None	No	0.50	45.40	47.2	3.3	1.83	547.0	3.3	25.79	11.59	1.00	llc	D Good	Fair	ΡΡ
T3.05	В	С	Gravel	Riffle-Pool	None	No	0.50	45.40	49.0	3.2	1.78	165.0	3.2	27.53	3.37	1.00	llc	D Good	Good	ΡΡ
T3.06	А	С	Gravel	Riffle-Pool	None	No	0.49	40.32	44.0	3.2	2.16	162.0	5.9	20.37	3.68	1.84		F Fair	Good	ΡΡ

			Phase	e 2 Stream Ty	Phase 1	Phase 2 Channel Data														
																		RGA	۹.	
	Seg-	Stream	Bed		Subcl.	Sub	Channel Cl	nannel E	Bankfull	Max.	Mean	Floodpr.	Abandn	W/D	Entrench-	Incision	StageEvo	ol. Con	dRHA	QC
Reach	ment	Туре	Material	Bedform	Slope	Rch?	Slope	width	width	depth	depth	width	FldPln	Ratio	ment	Ratio	Evol. No	del.	Cond.	Stf Aut
T3.06	В	С	Gravel	Plane Bed	None	No	0.49	40.32	32.0	3.8	2.15	298.7	7.4	14.88	9.33	1.95	ll F	Fair	Fair	ΡΡ
T3.07	0	В	Cobble	Step-Pool	а	No	5.31	38.01										Fair		ΡF
T3.08	0	Е	Sand	Dune-Ripple	None	No	0.13	37.87	,									Good		ΡF
T3.08S1.01	А	Е	Sand	Dune-Ripple	None	No	0.57	21.00)									Good		ΡF
T3.08S1.01	В	Е	Gravel	Riffle-Pool	None	No	0.57	21.00	21.4	2.85	2.29	753.0	4.3	9.34	35.19	1.51	IV F	Fair	Good	ΡΡ
T3.08S1.01	С	Е	Gravel	Riffle-Pool	None	No	0.57	21.00	20.8	2.95	2.05	450.0	2.95	10.15	21.63	1.00	lld D	Good	Good	ΡΡ
T3.08S1.02	0	В	Gravel	Riffle-Pool	None	No	2.18	23.70	26.0	2.4	1.59	36.5	2.4	16.35	1.40	1.00	ΙF	Good	Good	ΡΡ
T3.08S1.03	0	Е	Gravel	Riffle-Pool	b	No	2.69	23.18	21.1	2.65	1.94	263.7	3.65	10.88	12.50	1.38	III F	Fair	Good	ΡΡ
T3.08S1.04	А	В	Cobble	Step-Pool	а	Yes	3.40	21.90)									Good		ΡF
T3.08S1.04	В	В	Cobble	Riffle-Pool	None	No	3.40	21.90	29.0	2.1	1.34	46.0	3.0	21.64	1.59	1.43	ll F	Fair	Fair	ΡΡ
T3.09	0	С	Gravel	Riffle-Pool	None	No	1.72	28.77	,									Fair		ΡF
T3.10	А	С	Gravel	Riffle-Pool	None	No	1.66	27.33	25.6	1.85	1.11	218.0	2.65	23.06	8.52	1.43	IV F	Fair	Good	ΡΡ
T3.10	В	С	Gravel	Step-Pool	b	Yes	1.66	27.33	20.5	2.15	1.39	76.0	3.25	14.75	3.71	1.51	IV F	Fair	Good	ΡΡ
T3.11	0	В	Cobble	Step-Pool	а	No	5.86	26.47	27.5	2.1	1.26	44.2	2.4	21.83	1.61	1.14	II F	Fair	Fair	ΡΡ

Rapid Geomorphic Assessment

Kingsbury Branch

	_	<u> </u>		Degradation		Aggradation			Wic	lening	Pla	nform		Confin-					
Reach		Sub- Rch?	Score	STD	Historic	Score	STD	Historic	Score	Historic	Score	Historic	Geo. Score	Geo. Conditior	Evol. Stage	ement Type		C Stf /	QC Aut
M01	0	No	7	None	Yes	5	Other	No	12	No	13	No	0.46	Fair	III		Extreme		P
M02	0	No	8	None	Yes	9	None	No	10	No	9	No	0.45	Fair	III		Extreme		Р
M03	0	No											0.00	Fair		BD E	Extreme	Р	F
M05	0	No											0.00	Good		BD	High	Ρ	F
M06	0	No	16	None	No	12	None	No	13	No	6	No	0.59	Fair	llc	VB E	Extreme	Р	Р
M07	0	No	16	None	No	13	None	No	12	No	8	No	0.61	Fair	llc	VB E	Extreme	Ρ	Р
M08	А	No											0.00	Fair		BD E	Extreme	Ρ	F
M08	В	No											0.00	Fair		VB E	Extreme	Ρ	F
M09	0	No	8	None	Yes	12	None	No	13	No	9	No	0.53	Fair	III	BD E	Extreme	Ρ	Р
M10	0	No	8	None	Yes	10	None	No	10	No	8	No	0.45	Fair	III	BD E	Extreme	Ρ	Р
M11	А	No	18	None	No	7	None	No	13	No	5	No	0.54	Fair	lld	VB	Very	Ρ	Р
M11	В	No	3	C to B	Yes	13	None	No	13	No	13	No	0.53	Fair	III	BD	Very	Ρ	Р
M12	А	No	13	None	Yes	14	None	No	18	No	9	No	0.68	Good	III	SC N	Moderat	Ρ	Р
M12	В	Yes											0.00	Good		NC	High	Ρ	F
M14	А	No											0.00	Good			High	Ρ	F
M14	В	Yes	16	None	No	13	None	No	18	No	12	No	0.74	Good	llc	VB	High	Ρ	Ρ
M14	С	No	17	None	No	13	None	No	13	No	9	No	0.65	Good	llc	VB	High	Ρ	Ρ
M15	А	No	16	None	Yes	13	None	No	15	No	12	No	0.70	Good	llc	VB	High	Ρ	Ρ
M15	В	No	16	None	No	8	None	No	14	No	5	No	0.54	Fair	lld	VB	Very	Ρ	Ρ
M16	0	No	16	None	Yes	10	None	No	12	No	9	No	0.59	Fair	llc	NW	Very	Ρ	Р
T3.01	0	No											0.00	Fair		BD B	Extreme	Ρ	F
T3.02	0	No	17	None	No	14	None	No	8	No	8	No	0.59	Fair	llc	NW E	Extreme	Ρ	Р
T3.03	А	No											0.00	Good		NW	High	Ρ	F
T3.03	В	No	18	None	No	12	None	No	12	No	8	No	0.63	Fair	llc	VB E	Extreme	Ρ	Р
T3.03S1.01	А	Yes	10	None	Yes	12	None	No	13	No	8	No	0.54	Fair	II	VB E	Extreme	Ρ	Р
T3.03S1.01	В	No	12	None	Yes	8	None	No	7	No	8	No	0.44	Fair		VB	Very	Ρ	Р
T3.04	А	Yes	18	None	No	12	None	No	12	No	3	No	0.56	Fair	llc	VB E	Extreme	Ρ	Р
T3.04	В	No	17	None	No	12	None	No	12	No	9	No	0.63	Fair	llc	NW	Very	Ρ	Ρ
T3.04	С	No	16	None	No	11	None	No	12	No	7	No	0.58	Fair	llc	BD	Very	Ρ	Ρ
T3.05	А	No	16	None	No	12	None	No	13	No	13	No	0.68	Good	llc	VB	High	Ρ	Ρ
T3.05	В	No	18	None	No	12	None	No	14	No	10	No	0.68	Good	llc	BD	High	Ρ	Ρ
T3.06	А	No	7	None	Yes	12	None	No	14	No	8	No	0.51	Fair		BD	Very	Ρ	Ρ
T3.06	В	No	6	None	Yes	12	None	No	14	No	8	No	0.50	Fair	II	VB	Very	Ρ	Р

Reach				Degrada	ition	Aggradation			Wio	dening	Pla	Inform		Confin-					
		Sub- Rch?	Score	STD	Historic	Score	STD	Historic	Score	Historic	Score	Historic	Geo. Score	Geo. Conditior	Evol. Stage	ement Type	Sens- itivity	Q Stf A	QC Aut
T3.07	0	No											0.00	Fair				Ρ	F
T3.08	0	No											0.00	Good				Ρ	F
T3.08S1.01	А	No											0.00	Good				Ρ	F
T3.08S1.01	В	No	10	None	Yes	8	None	No	16	No	15	No	0.61	Fair	IV	VB E	Extreme	Ρ	Р
T3.08S1.01	С	No	14	None	No	9	None	No	15	No	14	No	0.65	Good	lld	VB	High	Ρ	Р
T3.08S1.02	0	No	14	None	No	15	None	No	14	No	13	No	0.70	Good	I	SC N	/loderat	Ρ	Р
T3.08S1.03	0	No	14	None	Yes	9	None	No	8	No	7	No	0.48	Fair	III	VB E	Extreme	Ρ	Р
T3.08S1.04	А	Yes											0.00	Good		SC		Ρ	F
T3.08S1.04	В	No	7	C to B	Yes	13	None	No	11	No	11	No	0.53	Fair	II	NW	High	Ρ	Р
T3.09	0	No											0.00	Fair				Ρ	F
T3.10	А	No	9	None	Yes	11	None	No	17	No	10	No	0.59	Fair	IV	VB	Very	Ρ	Р
T3.10	В	Yes	8	None	Yes	14	None	No	13	No	12	No	0.59	Fair	IV	VB	Very	Ρ	Ρ
T3.11	0	No	11	None	Yes	13	None	No	12	No	8	No	0.55	Fair	II	BD	High	Ρ	Ρ

APPENDIX B STREAM CROSSING ASSESSMENTS

Unnamed Tributary to Pekin Brook Pekin Brook Road Segment T3.03SI.0I-A

Culvert Length: 29.5 feet Culvert Height: 5.1 feet Culvert Width: 14 feet

Inlet

Geomorphic Compatibility – Partially Compatible

<u>Percent Bankfull Width</u> – Sufficient (101%) <u>Slope</u> – Culvert slope is lower than channel <u>Approach Angle</u> – Channelized straight <u>Erosion and Armoring</u> – High erosion downstream, low upstream; armoring intact <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Additional problems noted</u>: scour below; mid-channel bar in structure; low clearance

Aquatic Organism Passage – Reduced

Unnamed Tributary to Pekin Brook George Road Segment T3.03S1.01-B

Culvert Length: 40 feet Culvert Height: 5.5 feet Culvert Width: 5.5 feet

Outlet

Geomorphic Compatibility – Mostly Incompatible

<u>Percent Bankfull Width</u> – Significantly Undersized (23%) <u>Slope</u> – Culvert slope as compared to channel slope is the same <u>Approach Angle</u> – Sharp bend <u>Erosion and Armoring</u> – Erosion is high and armoring is failing both upstream and downstream <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Scour below structure, deposition above and below; structured skewed to roadway

Aquatic Organism Passage – Reduced

Priority for Replacement - High

Dugar Brook Apple Hill Road Segment T3.08S1.04-A

Road Width: 29 feet Bridge Clearance: 9.1 feet Bridge Span: 13 feet

Inlet

Outlet

Geomorphic Compatibility – Not applicable

Percent Bankfull Width - Undersized (59%)

<u>Slope</u> – Not applicable to bridges

Approach Angle – Channelized straight

<u>Erosion and Armoring</u> – Upstream hard bank armoring intact, downstream failing and creating mass failure

Sediment Continuity - No sediment deposits greater than 1/2 bankfull channel width

Notes: Scour above and below structure; bedrock present; good location for bridge due to bedrock; structure located at a significant change in valley slope

Aquatic Organism Passage - Not applicable

Priority for Replacement - Low

Dugar Brook Private Driveway Segment T3.08S1.04-B

Road Width: 12 feet Bridge Clearance: 2.5 feet Bridge Span: 2.8

Outlet

Inlet

Geomorphic Compatibility – Not applicable

<u>Percent Bankfull Width</u> – Significantly Undersized (14%) <u>Slope</u> – Not applicable to bridges <u>Approach Angle</u> – Channelized straight <u>Erosion and Armoring</u> – No erosion or hard bank armoring upstream or downstream <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Deposition below, scour above and below; woody debris at upstream opening; unstable – made of timber and shale slabs that are falling in; low clearance

Aquatic Organism Passage - Not applicable

Priority for Replacement - High

Pekin Brook Moscow Woods Road Reach T3.09

Culvert Length: 47 feet Culvert Height: 6.1 feet Culvert Width: 5.7 feet

Inlet

Geomorphic Compatibility – Partially Compatible

<u>Percent Bankfull Width</u> –Significantly Undersized (22%) <u>Slope</u> – Culvert slope higher than channel slope <u>Approach Angle</u> – Channelized straight <u>Erosion and Armoring</u> – Low erosion downstream; upstream armoring intact <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Scour above and below; no material in structure; bow in center of structure; cascade at downstream end with 0.3 foot drop; pool >4 feet deep downstream of structure

Aquatic Organism Passage – Reduced

Pekin Brook Private Crossing Segment T3.10-A

Road Width: 12.5 feet Bridge Clearance: 3.6 feet Bridge Span: 4.4 feet

Outlet

Inlet

Geomorphic Compatibility – Not applicable

<u>Percent Bankfull Width</u> – Significantly Undersized (16%) <u>Slope</u> – Not applicable to bridges <u>Approach Angle</u> – Mild bend <u>Erosion and Armoring</u> – No erosion upstream and downstream; downstream armoring failing <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Downstream scour, upstream deposition; steep riffle upstream of structure

Aquatic Organism Passage - Not applicable

Pekin Brook TH 16 Reach T3.11

Road Width: 17 feet Bridge Clearance: 6.5 feet Bridge Span: 6 feet

Inlet

Outlet

Geomorphic Compatibility – Not applicable

<u>Percent Bankfull Width</u> – Significantly Undersized (23%) <u>Slope</u> – Not applicable to bridges <u>Approach Angle</u> – Channelized straight <u>Erosion and Armoring</u> – Upstream and downstream armoring is failing <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Dam just upstream of structure; bedrock present upstream and downstream; structure close to house; structure not aligned with channel; steep riffle upstream of structure

Aquatic Organism Passage - Not applicable

Pekin Brook North Calais Road Reach T3.11

Culvert Length: 50 feet Culvert Height: 13 feet Culvert Width: 9 feet

Outlet

Inlet

Geomorphic Compatibility – Mostly Compatible

<u>Percent Bankfull Width</u> – Significantly Undersized (33%) <u>Slope</u> – Culvert slope as compared to channel slope is the same <u>Approach Angle</u> – Channelized straight <u>Erosion and Armoring</u> – No erosion; armoring intact <u>Sediment Continuity</u> – No sediment deposits greater than ½ bankfull channel width <u>Notes</u>: Channelized through box culvert with hard bank walls; deep pool at outlet; scour upstream and downstream; structure not aligned with channel.

Aquatic Organism Passage – Full

Priority for Replacement – Low